如图1,在平面直角坐标系中,已知点,点在正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.点M、N在轴上,且是等边三角形.求点B的坐标求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值;如果取的中点,以为边在内部作如图2所示的矩形,点在线段上.设等边和矩形重叠部分的面积为,请求出当秒时,与的函数关系式,并求出的最大值.
若方程组:与方程组的解相同,求m、n的值.
车间里有90名工人,每人每天能生产螺母24个或螺栓15个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?
解方程: (1)3(x﹣1)﹣7(x+5)=30(x+1); (2).
已知3ax﹣3by+2与﹣2ab2是同类项,求x、y的值.
已知方程组的解是,则a+b的值为 3 .