如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.
我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮 + 住宿),一年时间就收回投资的 80 % ,其中餐饮利润是住宿利润的2倍还多1万元.
(1)求去年该农家乐餐饮和住宿的利润各为多少万元?
(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有 10 % 的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?
垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表
测试序号
1
2
3
4
5
6
7
8
9
10
成绩(分 )
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为 S 甲 2 = 0 . 8 、 S 乙 2 = 0 . 4 、 S 丙 2 = 0 . 8 )
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)
如图,四边形 ABCD 为平行四边形, F 是 CD 的中点,连接 AF 并延长与 BC 的延长线交于点 E .求证: BC = CE .
如图所示, AB 是 ⊙ O 的直径, P 为 AB 延长线上的一点, PC 切 ⊙ O 于点 C , AD ⊥ PC ,垂足为 D ,弦 CE 平分 ∠ ACB ,交 AB 于点 F ,连接 AE .
(1)求证: ∠ CAB = ∠ CAD ;
(2)求证: PC = PF ;
(3)若 tan ∠ ABC = 3 2 , AE = 5 2 ,求线段 PC 的长.
如图,已知抛物线 y = − 3 3 x 2 + bx + 3 与 x 轴交于 A , B 两点,与 y 轴交于点 C ,其中点 A 的坐标为 ( − 3 , 0 )
(1)求 b 的值及点 B 的坐标;
(2)试判断 ΔABC 的形状,并说明理由;
(3)一动点 P 从点 A 出发,以每秒2个单位的速度向点 B 运动,同时动点 Q 从点 B 出发,以每秒1个单位的速度向点 C 运动(当点 P 运动到点 B 时,点 Q 随之停止运动),设运动时间为 t 秒,当 t 为何值时 ΔPBQ 与 ΔABC 相似?