如图线段AB的端点在边长为1的小正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.⑴请你在所给的网格中画出线段AC及点B经过的路径;⑵若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2, -1),则点C的坐标为 ;⑶线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为 ;⑷若有一张与⑶中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为 .
如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E. (1)试判断△BDE的形状,并说明理由; (2)若AB=4,AD=8,求△BDE的面积.
如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.
已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点. 求: (1)图象与x轴的交点坐标; (2)图象与两坐标轴围成的三角形面积.
解下列方程组 .
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥BC,交AC于P,连结MP。已知动点运动了x秒。 (1)P点的坐标为( , );(用含x的代数式表示) (2)试求 ⊿MPA面积的最大值,并求此时x的值。 (3)请你探索:当x为何值时,⊿MPA是一个等腰三角形? 你发现了几种情况?写出你的研究成果。