小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡底跑到坡顶再原路返回坡底.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).小亮下坡的速度是 ▲ m/min;= ▲ 求出AB所在直线的函数关系式如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
如图,把长方形纸片ABCD沿EF折叠,使得点D与点B重合,点C落在点C′的位置上. (1)试说明△BEF是等腰三角形; (2)图形中是否存在成中心对称的两个图形?如果存在,请指出是哪两个图形(不必说明理由,图中实线、虚线一样看待); (3)若AB=4,AD=8,求折痕EF的长度.
如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE. (1)图中哪两个图形成中心对称? (2)若△ADC的面积为4,求△ABE的面积.
如图,两个半圆分别以P、Q为圆心,它们的半径相等,A1、P、B1、B2、Q、A2在同一条直线上.这个图形中的两个半圆是否成中心对称?如果是,请找出对称中心O.
如图,在四边形ABCD中,AD∥BC,E是CD的中点. (1)画图:连接AF并延长,交BC的延长线于点F,连接BE; (2)填空:点A与点F关于点成中心对称,若AB=AD+BC,则△ABF是三角形,此时点A与点F关于直线成轴对称; (3)图中△的面积等于四边形ABCD的面积.
如图,两个任意四边形中心对称,请找出它们的对称中心.