如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.试猜想线段BG和AE的数量关系,请直接写出你得到的结论.将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.
如图,方格纸中△ABC的三个顶点均在格点上,将△ABC向右平移5格得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转180°,得到△A1B2C2.(1)在方格纸中画出△A1B1C1和△A1B2C2;(2)设B点坐标为(﹣3,﹣2),B2点坐标为(4,2),△ABC与△A1B2C2是否成中心对称?若成中心对称,请画出对称中心,并写出对称中心的坐标;若不成中心对称,请说明理由.
在平面直角坐标系中,已知△OAB,A(0,﹣3),B(﹣2,0).(1)将△OAB关于点P(1,0)对称,在图1中画出对称后的图形,并涂黑;(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.
如图,在所给网格中完成下列各题:(1)画出图1关于直线MN对称的图2;(2)从平移的角度看,图2是由图1向______平移______个单位得到的;(3)画出图1绕点P逆时针方向旋转90°后的图3.
在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.
如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在个点上,在建立平面直角坐标系后,点A的坐标为(﹣6,1),点B的坐标为(﹣3,1),点C的坐标为(﹣3,3).(1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1,并写出点A1的坐标;(2)将原来的Rt△ABC绕点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形.