在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,-3).
(1)求出该抛物线的函数解析式;
(2)设该抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称.若四边形OAPF的面积为48,求点P的坐标;
(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值,若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.
某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放,某日从上午7点到10点,每个普通售票窗口售出的车票数(张)与售票时间x(小时)的变化趋势如图1,每个无人售票窗口售出的车票数(张)与售票时间x(小时)的变化趋势是以原点为顶点的抛物线的一部分,如图2,若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.
(1)求图2中所确定抛物线的解析式;
(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
如图,直线l:y=−x+6与x轴、y轴分别交于点M,N.点P从点N出发,以每秒1个单位长度的速度沿N→O方向运动,点Q从点O出发,以每秒2个单位长度的速度沿O→M的方向运动.已知点P、Q同时出发,当点Q到达点M时,P、Q两点同时停止运动,设运动时间为t秒.
(1)直接写出点M,N的坐标;
(2)当t为何值时,PQ与l平行?
(3)设四边形MNPQ的面积为S,求S关于t的函数关系式,并求S的最小值.
已知:函数(a为常数).
(1)若该函数图象与坐标轴只有两个交点,求a的值;
(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(,0),B(,0)两点,与y轴相交于点C,且.
①求抛物线的解析式;
②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.
(本小题满分9分)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
在平面直角坐标系xOy中,抛物线经过点N(2,-5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6.
(1)求此抛物线的解析式;
(2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P的坐标;
(3)设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM ?若存在,求出点Q的坐标;若不存在,说明理由.
用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为米,面积为平方米.
(1)求关于的函数关系式;
(2)当为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,求出其边长;如果不能,说明理由.
某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量w(kg)随销售单价x(元/ kg)的变化而变化,具体变化规律如下表所示
销售单价x(元/ kg) |
…… |
70 |
75 |
80 |
85 |
90 |
…… |
月销售量w(kg) |
…… |
100 |
90 |
80 |
70 |
60 |
…… |
设该绿茶的月销售利润为y(元)(销售利润=单价×销售量-成本)
(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?
(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700,那么第二个月时里应该确定销售单价为多少元?
(本小题10分)今年,6月2日为端午节.在端午节前夕,某校的八年级三位同学到超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题.
(1)小华的问题解答: ;(2)小明的问题解答: .
已知二次函数y=a+bx的图象过点(2,0),(-1,6).
(1)求二次函数的关系式;
(2)写出它的对称轴和顶点坐标;
(3)请说明x在什么范围内取值时,函数值y<0?
如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(),点B的坐标为(),点C在y轴的正半轴上,且AB=OC.
(1)求点C的坐标;
(2)求这个二次函数的解析式,并求出该函数的最大值.
(本小题10分)为了落实国务院总理李克强同志的指示精神,市政府出台了一系列“三农”优惠政策,使农民收入大幅增加,某农户生产一种“红颜草莓”,已知这种草莓的成本价为10元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=60-2x,设这种草莓每天的销售利润为y(元).
(1)求y与x之间的函数关系式:
(2)当这种草莓的销售价定为多少时,每天的销售利润最大?最大利润是多少?
(3)若这种草莓从上市开始销售单价x与销售月数m的关系是x=-2m+22(0<m<6,且m为整数),求该农户共获得多少万元利润(每个月按30天计).
已知二次函数.
(1)求函数图象的对称轴和顶点坐标;
(2)求这个函数图象与x轴的交点坐标.