初中数学

将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是             cm2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为,点P的横坐标为,求关于的函数关系式,并求出的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在轴上时,求出对应点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.

(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等腰直角三角形时,求P点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中,为坐标原点,抛物线交x轴于A、B两点(点A在点B的左侧),交y轴于点C,以OB、OC为边作矩形OBDC,CD交抛物线于G.

(1)求OB和OC的长;
(2)抛物线的对称轴在边OB(不包括O、B两点)上作平行移动,交x轴于点E,交CD于点F,交BC于点M,交抛物线于点P.设OE=m,PM=h,求h与m的函数关系式,并求PM的最大值;
(3)连接PC,在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形与△BEM相似?若存在,求出相应的m的值,并判断△PCM的形状;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.
设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的函数关系式;
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.  

(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标;
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数表达式是y = 60x-1.5x2,该型号飞机着陆后需滑行       m才能停下来.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量 (单位:个)与销售单价 (单位:元/个)之间的对应关系如图所示:

(1)之间的函数关系是                    
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润 (单位:元)与销售单价 (单位:元/个)之间的函数关系式;
(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴交于另一点A,线段BC与抛物线的对称轴l相交于点D,设抛物线的顶点为P,连接AD,线段AD与y轴相交于点E.

(1)求该抛物线的解析式及对称轴;
(2)连结AP,请在y轴正半轴上找一点Q,使Q、C、D为顶点的三角形与△ADP全等,并求出点Q的坐标.将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴l相交于点N,若2DM=DN,求点M的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点.

(1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则:
①b的值等于     
②四边形ABCD为( )
A、平行四边形;B、矩形;C、菱形;D、正方形.
(2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c﹣1),求△ABD的面积;
(3)如图3,若F1:y=x2x+,经过变换后,AC=2,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知抛物线y=ax2+2x+c与x轴交于A(1,0)和点B,与y轴交于点C(0,﹣3).
(1)求抛物线的解析式.
(2)如图1,已知点H的坐标为(0,1),设点M为y轴左侧抛物线上的一个动点,试猜想:是否存在这样的点M,使|MA﹣MH|的值最大,如果存在,请求出点M的坐标;如果不存在,请说明理由.
(3)如图2,过x轴上点E(﹣2,0)作ED⊥AB交抛物线于点D,在y轴上找一点F,使△EDF的周长最小,求出此时点F的坐标;
(4)如图3,已知点N(0,﹣1).问在抛物线上是否存在点Q(点Q在y轴的左侧),使得△QNC的面积与△QNA的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.

(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“双十一”淘宝网销售一款工艺品,每件的成本是50元.销售期间发现:销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x元时,每天的销售利润为y元.
(1)求出y与x之间的函数表达式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要             元.
(每天的总成本=每件的成本×每天的销售量)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。

(1)点A、B、C的坐标分别为                     
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,若存在,请求出点P的坐标;若不存在,请说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数的图象经过点(﹣1,4),且与直线相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).

(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值试题