初中数学

如图,在网格中,小正方形的边长均为1,点 A B C 都在格点上,则 ABC 的正切值是 (    )

A.2B. 2 5 5 C. 5 5 D. 1 2

来源:2016年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, B = 90 ° AB = 2 5 BC = 5 .将 ΔABC 绕点 A 按逆时针方向旋转 90 ° 得到△ A B ' C ' ,连接 B ' C ,则 sin ACB ' =   

来源:2018年江苏省苏州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 AD = 5 ,点 E DC 上,将矩形 ABCD 沿 AE 折叠,点 D 恰好落在 BC 边上的点 F 处,那么 sin EFC 的值为  

来源:2019年甘肃省天水市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图所示, ΔABC 的顶点在正方形网格的格点上,则 tan A 的值为 (    )

A. 1 2 B. 2 2 C.2D. 2 2

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知四边形 ABCD 内接于 O A BDC ̂ 的中点, AE AC A ,与 O CB 的延长线交于点 F E ,且 BF ̂ = AD ̂

(1)求证: ΔADC ΔEBA

(2)如果 AB = 8 CD = 5 ,求 tan CAD 的值.

来源:2016年四川省凉山州中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 分别交 AC BC 于点 D E ,点 F AC 的延长线上,且 BAC = 2 CBF

(1)求证: BF O 的切线;

(2)若 O 的直径为4, CF = 6 ,求 tan CBF

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,以 ΔABC BC 边上一点 O 为圆心,经过 A C 两点且与 BC 边交于点 E ,点 D CE 的下半圆弧的中点,连接 AD 交线段 EO 于点 F ,若 AB = BF

(1)求证: AB O 的切线;

(2)若 CF = 4 DF = 10 ,求 O 的半径 r sin B

来源:2016年四川省广安市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AE 平分 DAB ,已知 CE = 6 BE = 8 DE = 10

(1)求证: BEC = 90 °

(2)求 cos DAE

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, AB 是圆锥的母线, BC 为底面直径,已知 BC = 6 cm ,圆锥的侧面积为 15 πc m 2 ,则 sin ABC 的值为 (    )

A. 3 4 B. 3 5 C. 4 5 D. 5 3

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 4 × 4 的正方形网格图中,已知点 A B C D O 均在格点上,其中 A B D 又在 O 上,点 E 是线段 CD O 的交点.则 BAE 的正切值为   

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ΔDBC ΔABC 关于直线 BC 对称,连接 AD ,与 BC 相交于点 O ,过点 C CE CD ,垂足为 C AD 相交于点 E ,若 AD = 8 BC = 6 ,则 2 OE + AE BD 的值为 (    )

A.

4 3

B.

3 4

C.

5 3

D.

5 4

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 O AC = 4 BD = 8 ,点 E 在边 AD 上, AE = 1 3 AD ,连结 BE AC 于点 M

(1)求 AM 的长.

(2) tan MBO 的值为   

来源:2021年吉林省长春市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

问题探究:

小红遇到这样一个问题:如图1, ΔABC 中, AB = 6 AC = 4 AD 是中线,求 AD 的取值范围.她的做法是:延长 AD E ,使 DE = AD ,连接 BE ,证明 ΔBED ΔCAD ,经过推理和计算使问题得到解决.

请回答:(1)小红证明 ΔBED ΔCAD 的判定定理是:   

(2) AD 的取值范围是  

方法运用:

(3)如图2, AD ΔABC 的中线,在 AD 上取一点 F ,连结 BF 并延长交 AC 于点 E ,使 AE = EF ,求证: BF = AC

(4)如图3,在矩形 ABCD 中, AB BC = 1 2 ,在 BD 上取一点 F ,以 BF 为斜边作 Rt Δ BEF ,且 EF BE = 1 2 ,点 G DF 的中点,连接 EG CG ,求证: EG = CG

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 D O 上(点 D 不与 A B 重合),直线 AD 交过点 B 的切线于点 C ,过点 D O 的切线 DE BC 于点 E

(1)求证: BE = CE

(2)若 DE / / AB ,求 sin ACO 的值.

来源:2018年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, ΔABC 是一张直角三角形纸片, C = 90 ° ,两直角边 AC = 6 cm BC = 8 cm ,现将 ΔABC 折叠,使点 B 与点 A 重合,折痕为 EF ,则 tan CAE =          

来源:2016年山东省日照市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学锐角三角函数的定义试题