初中数学

如图,在 5 × 4 的正方形网格中,每个小正方形的边长都是1, ΔABC 的顶点都在这些小正方形的顶点上,则 sin BAC 的值为 (    )

A.

4 3

B.

3 4

C.

3 5

D.

4 5

来源:2019年湖北省宜昌市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

一般地,当 α β 为任意角时, sin ( α + β ) sin ( α - β ) 的值可以用下面的公式求得: sin ( α + β ) = sin α · cos β + cos α · sin β sin ( α - β ) = sin α · cos β - cos α · sin β .例如 sin 90 ° = sin ( 60 ° + 30 ° ) = sin 60 ° · cos 30 ° + cos 60 ° · sin 30 ° = 3 2 × 3 2 + 1 2 × 1 2 = 1 .类似地,可以求得 sin 15 ° 的值是        

来源:2016年山东省临沂市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在以为直角顶点的等腰直角三角形纸片中,将角折起,使点落在边上的点(不与点重合)处,折痕是

如图1,当时,

如图2,当时,

如图3,当时,

依此类推,当为正整数)时,  

来源:2019年山东省淄博市中考数学试卷(a卷)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在边长为1的小正方形网格中,点 A B C D 都在这些小正方形的顶点上, AB CD 相交于点 O ,则 tan AOD =   

来源:2018年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,面积为24的 ABCD 中,对角线 BD 平分 ABC ,过点 D DE BD BC 的延长线于点 E DE = 6 ,则 sin DCE 的值为 (    )

A.

24 25

B.

4 5

C.

3 4

D.

12 25

来源:2019年山东省烟台市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AE BC ,垂足为点 E ,以 AE 为直径的 O 与边 CD 相切于点 F ,连接 BF O 于点 G ,连接 EG

(1)求证: CD = AD + CE

(2)若 AD = 4 CE ,求 tan EGF 的值.

来源:2019年辽宁省营口市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

中,,则  

来源:2019年四川省雅安市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图, O 是正方形 ABCD 的内切圆,切点分别为 E F G H ED O 相交于点 M ,则 sin MFG 的值为   

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 4 × 4 的正方形网格图中,已知点 A B C D O 均在格点上,其中 A B D 又在 O 上,点 E 是线段 CD O 的交点.则 BAE 的正切值为   

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ΔDBC ΔABC 关于直线 BC 对称,连接 AD ,与 BC 相交于点 O ,过点 C CE CD ,垂足为 C AD 相交于点 E ,若 AD = 8 BC = 6 ,则 2 OE + AE BD 的值为 (    )

A.

4 3

B.

3 4

C.

5 3

D.

5 4

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 O AC = 4 BD = 8 ,点 E 在边 AD 上, AE = 1 3 AD ,连结 BE AC 于点 M

(1)求 AM 的长.

(2) tan MBO 的值为   

来源:2021年吉林省长春市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

问题探究:

小红遇到这样一个问题:如图1, ΔABC 中, AB = 6 AC = 4 AD 是中线,求 AD 的取值范围.她的做法是:延长 AD E ,使 DE = AD ,连接 BE ,证明 ΔBED ΔCAD ,经过推理和计算使问题得到解决.

请回答:(1)小红证明 ΔBED ΔCAD 的判定定理是:   

(2) AD 的取值范围是  

方法运用:

(3)如图2, AD ΔABC 的中线,在 AD 上取一点 F ,连结 BF 并延长交 AC 于点 E ,使 AE = EF ,求证: BF = AC

(4)如图3,在矩形 ABCD 中, AB BC = 1 2 ,在 BD 上取一点 F ,以 BF 为斜边作 Rt Δ BEF ,且 EF BE = 1 2 ,点 G DF 的中点,连接 EG CG ,求证: EG = CG

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 D O 上(点 D 不与 A B 重合),直线 AD 交过点 B 的切线于点 C ,过点 D O 的切线 DE BC 于点 E

(1)求证: BE = CE

(2)若 DE / / AB ,求 sin ACO 的值.

来源:2018年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, ΔABC 是一张直角三角形纸片, C = 90 ° ,两直角边 AC = 6 cm BC = 8 cm ,现将 ΔABC 折叠,使点 B 与点 A 重合,折痕为 EF ,则 tan CAE =          

来源:2016年山东省日照市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点 O 重合,顶点 A B 恰好分别落在函数 y = - 1 x ( x < 0 ) y = 4 x ( x > 0 ) 的图象上,则 sin ABO 的值为 (    )

A.

1 3

B.

3 3

C.

5 4

D.

5 5

来源:2019年湖北省咸宁市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

初中数学锐角三角函数的定义试题