初中数学

如图,在平面直角坐标系中,四边形ABCD为梯形,AD∥BC,∠C=90°,tan∠ABC=2,点D(﹣8,6),将△AOB沿直线AB翻折,点O落在点E处,直线AE交x轴于点F.

(1)求点F的坐标;
(2)矩形AOCD以每秒1个单位长度的速度沿x轴向右运动,当点C′与点F重合时停止运动,运动后的矩形A′O′C′D′与△AOF重合部分的面积为S,设运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,在矩形A′O′C′D′运动过程中,直线A′O′与射线AB交于G,是否存在时间t,使点A关于直线FG的对称点恰好落在x轴上?若存在,求t的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,AC=4cm,BC=3cm,点P由B出发沿BA的方向向点A匀速运动,速度为1cm/s,同时点Q由A出发沿AC的方向向点C匀速运动,速度为2cm/s,连接PQ,设运动的时间为t(s),其中0<t<2,解答下列问题:

(1)当t为何值时,以P、Q、A为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,线段PQ将△ABC的面积分成1:2两部分?若存在,求出此时的t,若不存在,请说明理由;
(3)点P、Q在运动的过程中,△CPQ能否成为等腰三角形?若能,请求出此时t的值,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.

(1)求证:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有两个直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4,将这两个直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.
(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC=        度;
(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;
(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围(直接写出结果,不必写过程).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点A的坐标为(0,1),抛物线y=ax2+bx+c的顶点为坐标原点O,且与直线y=2x-4有唯一交点B.

(1)抛物线的函数表达式为            
(2)如图1,设直线y=2x-4与y轴交于点D,点P是抛物线上一点.
①过点P作PE∥y轴,交直线BD于点E,若△ADE与△ABD相似,求点P的坐标;
②将△ABD沿直线BD折叠后,点A落在点C处(图2),是否存在点P,使得S△PCD=3S△PAB?如果存在,请求出所有满足条件的点P的坐标;如果不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

点A、B、C在同一直线上,在直线AC的同侧作△ABE和△BCF,连接AF,CE.取AF、CE的中点M、N,连接BM,BN,MN.
(1)若△ABE和△FBC是等腰直角三角形,且∠ABE=∠FBC=90°(图1),则△MBN是______三角形;
(2)在△ABE和△BCF中,若BA=BE,BC=BF,且∠ABE=∠FBC=α,(图2),则△MBN是______三角形,且∠MBN=______;
(3)若将(2)中的△ABE绕点B旋转一定角度,(图3),其他条件不变,那么(2)中的结论是否成立?若成立,给出你的证明;若不成立,写出正确的结论并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.

(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直线y=-x+3与x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.

(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90º,AB=10cm,AC∶BC=4∶3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.

(1)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;
(2)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.
(3)当点Q在BC边上运动时,是否存在x,使得以△PBQ的一个顶点为圆心作圆时,另外两个顶点均在这个圆上,若存在,求出 x的值;不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,边AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.

(1)直接写出 D,E 两点的坐标,D(         ),E(          
(2)求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?
(3)当t为何值时,DP平分∠EDA?
(4)当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=11,BC=13,AB=12.动点P、Q分别在边AD和BC上,且BQ=2DP.线段PQ与BD相交于点E,过点E作EF∥BC,交CD于点F,射线PF交BC的延长线于点G,设DP=x.

(1)求的值.
(2)当点P运动时,试探究四边形EFGQ的面积是否会发生变化?如果发生变化,请用x的代数式表示四边形EFGQ的面积S;如果不发生变化,请求出这个四边形的面积S.
(3)当△PQG是以线段PQ为腰的等腰三角形时,求x的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在□ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若,求的值.
(1)尝试探究
在图1中,过点E作交BG于点H,则AB和EH的数量关系是          ,CG和EH的数量关系是          ,的值是         
(2)类比延伸
如图2,在原题的条件下,若(m>0),则的值是       (用含的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F,若),则的值是             (用含a、b的代数式表示).
          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,如图,以点P(﹣1,0)为圆心的圆,交x轴于A、C两点(A在C的左侧),交y轴于B、D两点(B在D的上方),且∠BAC=30°,

(1)如图①求⊙P的半径及点B的坐标;
(2)点Q是⊙P上任意一点,求△ABQ面积S的取值范围;
(3)如图②,已知点M(-5,0),过M作直线y=kx+b交y轴于点N,
①若MN//AB,试判断MN与⊙P的位置关系,并说明理由;
②在该直线上存在一点G,使以G、A、C为顶点的三角形是直角三角形,且满足条件的点G有且只有三个不同位置,求直线MN的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题14分)如图,在等边中,于点,点在边上运动,过点与边交于点,连结,以为邻边作□,设□重叠部分图形的面积为,线段的长为

(1)求线段的长(用含的代数式表示);
(2)当四边形为菱形时,求的值;
(3)直接写出之间的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题