如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.
如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC关于原点O对称的△A1B1C1; (2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标; (3)△A1B1C1与△A2B2C2成中心对称,写出其对称中心的坐标.
计算:.
解方程:.
探究:已知平行四边形ABCD的面积为100,M是AB所在直线上的一点 (1)如图1:当点M与B重合时,S△DCM =________; (2)如图2:当点M与B与A均不重合时,S△DCM =________ (3)如图3:当点M在AB(或BA)的延长线上时,S△DCM =________ 推广:平行四边形ABCD的面积为a,E、F为两边DC、BC延长线上两点,连接DF、AF、AE、BE.求出图4中阴影部分的面积,并简要说明理由 应用:如图5是某广场的一平行四边形绿地ABCD,PQ、MN分别平行DC、AD,PQ、MN交于O点,其中S四边形AM OP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2.现进行绿地改造,在绿地内部做一个三角形区域MQD,连接DM、QD、QM,(图中阴影部分)种植不同的花草,求三角形DMQ区域的面积.
将一张矩形纸条ABCD按如图所示沿折叠,若折叠∠FEC=64°. (1)求∠1的度数; (2)求证:△EFG是等腰三角形.