如图,设抛物线C1:, C2:,C1与C2的交点为A,
B,点A的坐标是,点B的横坐标是-2.
(1)求的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG. 过C2顶点M的直线记为,且与x轴交于点N.
①若过△DHG的顶点G,点D的坐标为(1, 2),求点N的横坐标;
②若与△DHG的边DG相交,求点N的横坐标的取值范围.
等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小亮拿着300角的透明三角板,使300角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE与△CFP还相似吗?
②探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
③设EF=m,△EPF的面积为S,试用m的代数式表示S.
梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).
(1)当t为何值时,四边形PCDQ为平行四边形?
(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.
已知:如图,在梯形ABCD中,AD∥BC,∠DCB = 90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.
(1)当P点在BC边上运动时,求证:△BOP∽△DOE;
(2)设(1)中的相似比为,若AD︰BC = 2︰3. 请探究:当k为下列三种情况时,四边形ABPE是什么四边形?
①当= 1时,是 ;
②当= 2时,是 ;
③当= 3时,是 .
请证明= 2时的结论.
(本题14分)如图11,在△ABC中,∠ACB=,AC=BC=2,M是边AC的中点,
CH⊥BM于H.
(1)试求sin∠MCH的值;
(2)求证:∠ABM=∠CAH;
(3)若D是边AB上的点,且使△AHD为等腰三角形,请直接写出AD的长为________.
如图,在边长为8的正方形ABCD
中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作圆O的切线交边BC于点N.
(1) 求证:△ODM∽△MCN;
(2) 设DM=x,求OA的长(用含x的代数式表示);
(3) 在点O运动的过程中,设△CMN的周长为p,试用含x的代数式表示p,你能发现怎样的结论?
已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.
(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.
(本小题满分8分)如图10,在6×8的网格图中,每个小正方形边长均为1,点
O和△ABC的顶点均为小正方形的顶点.
⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2
⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)
如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C
为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
如图(十一)所示,在平面直角坐标系Oxy中,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C.
(1)求∠ACB的度数;
(2)已知抛物线y=ax2+bx+3经过A、B两点,求抛物线的解析式;
(3)线段BC上是否存在点D,使△BOD为等腰三角形.若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.
、在中国地理地图册上,连接上海,香港,台湾三地构成一个三角形,用刻度迟测得他们之间的距离。上海----香港5. 4cm , 上海-----台湾 3cm , 香港------台湾3. 6cm .飞机从台湾直飞到上海的距离为1286千米,那么飞机从台湾绕道香港再到上海的空中飞行距离是多少千米?
某同学将一张报纸对折后,发现对折后的半张报纸与整张报纸恰好相似,如图所示
求整张报纸的长和宽的比是多少?
、如图所示为一矩形木框,四周为宽度相同的木条,那么这个矩形框的里、外两个矩形是相似形吗?假设木框长为30 cm宽为20cm,木条的宽度为2 cm,试加以验证。