已知,如图,以点P(﹣1,0)为圆心的圆,交x轴于A、C两点(A在C的左侧),交y轴于B、D两点(B在D的上方),且∠BAC=30°,(1)如图①求⊙P的半径及点B的坐标;(2)点Q是⊙P上任意一点,求△ABQ面积S的取值范围;(3)如图②,已知点M(-5,0),过M作直线y=kx+b交y轴于点N,①若MN//AB,试判断MN与⊙P的位置关系,并说明理由;②在该直线上存在一点G,使以G、A、C为顶点的三角形是直角三角形,且满足条件的点G有且只有三个不同位置,求直线MN的函数关系式.
x-2(x-y2)+(-x+y2),其中x=-2,y=-
(1)(2)(3) (4)(5) (6)
如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。请你画出它的主视图与左视图。
如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M。(1)求证:△ADC≌△AEB ,(2)判断△EGM是什么三角形,并证明你的结论;(3)猜想线段BG、AF与FG的数量关系并证明你的结论。
如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1);(2)