已知,如图,以点P(﹣1,0)为圆心的圆,交x轴于A、C两点(A在C的左侧),交y轴于B、D两点(B在D的上方),且∠BAC=30°,(1)如图①求⊙P的半径及点B的坐标;(2)点Q是⊙P上任意一点,求△ABQ面积S的取值范围;(3)如图②,已知点M(-5,0),过M作直线y=kx+b交y轴于点N,①若MN//AB,试判断MN与⊙P的位置关系,并说明理由;②在该直线上存在一点G,使以G、A、C为顶点的三角形是直角三角形,且满足条件的点G有且只有三个不同位置,求直线MN的函数关系式.
11月读书节,深圳市为统计某学校初三学生读书状况,如下图: (1)三本以上的x值为,参加调差的总人数为,补全统计图; (2)三本以上的圆心角为。 (3)全市有6.7万学生,三本以上有万人。
解方程:。
如图,过原点的直线和与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA. (1)四边形ABCD一定是四边形;(直接填写结果) (2)四边形ABCD可能是矩形吗?若可能,试求此时和之间的关系式;若不可能,说明理由; (3)设P(,),Q(,)()是函数图象上的任意两点,,,试判断,的大小关系,并说明理由.
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△,设旋转角为,记直线与的交点为P. (1)如图1,当时,线段的长等于,线段的长等于;(直接填写结果) (2)如图2,当时,求证:,且; (3)①设BC的中点为M,则线段PM的长为;②点P到AB所在直线的距离的最大值为.(直接填写结果)
如图,直线经过点A(4,0),B(0,3). (1)求直线的函数表达式; (2)若圆M的半径为2,圆心M在轴上,当圆M与直线相切时,求点M的坐标.