初中数学

正方形ABCD中,点E是CD的中点,点F在BC上,且CF:BC=1:4,你能说明AE:EF=AD:EC吗?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△中,平分于点于点.求的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,将一个直角三角板的直角顶点P放在正方形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与BC相交于点E.

(1)求证:PA=PE;
(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且AD=10,DC=8,求AP:PE;
(3)在(2)的条件下,当P滑动到BD的延长线上时(如图3),请你直接写出AP:PE的比值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠ACB=90°,AC=2,BC=4.点D是线段BC上的一个动点.点D与点B、C不重合,过点D作DE⊥BC交AB于点E,将△ABC沿着直线DE翻折,使点B落在直线BC上的F点.

(1)设∠BAC=α(如图①),求∠AEF的大小;(用含α的代数式表示)
(2)当点F与点C重合时(如图②),求线段DE的长度;
(3)设BD=x,△EDF与△ABC重叠部分的面积为S,试求出S与x之间函数关系式,并写出自变量x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60°得PC.

(1)当点P运动到线段OA的中点时,点C的坐标为         
(2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标;
(3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,I是△ABC的内心,∠BAC的平分线与△ABC的外接圆相交于点D,交BC于点E.

(1)求证:BD=ID;
(2)求证:ID2=DE•DA.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在中,,若,则

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.

(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写"真"或"假" )

①四条边成比例的两个凸四边形相似; (   命题)

②三个角分别相等的两个凸四边形相似; (   命题)

③两个大小不同的正方形相似. (   命题)

(2)如图1,在四边形 ABCD 和四边形 A 1 B 1 C 1 D 1 中, ABC = A 1 B 1 C 1 BCD = B 1 C 1 D 1 AB A 1 B 1 = BC B 1 C 1 = CD C 1 D 1 .求证:四边形 ABCD 与四边形 A 1 B 1 C 1 D 1 相似.

(3)如图2,四边形 ABCD 中, AB / / CD AC BD 相交于点 O ,过点 O EF / / AB 分别交 AD BC 于点 E F .记四边形 ABFE 的面积为 S 1 ,四边形 EFCD 的面积为 S 2 ,若四边形 ABFE 与四边形 EFCD 相似,求 S 2 S 1 的值.

来源:2019年湖南省长沙市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,矩形PQMN内接于△ABC,矩形周长为24,AD⊥BC交PN于E,且BC=10,AE=16,求△ABC的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆A、B,恰好被南岸的两棵树C、D遮住,并且在这两棵树之间还有三棵树,求河的宽度.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE与BC分别与AD、AE相交于点F、G,CB=5.
回答下列问题:

(1)求证:△GAF∽△GBA;
(2)求证:AF2=FG•FC;
(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)
(4)探究BF2、FG2、GC2之间的关系,证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC的边BC在直线l上,AD是△ABC的高,∠ABC=45°,BC=6cm,AB=2cm.点P从点B出发沿BC方向以1cm/s速度向点C运动,当点P到点C时,停止运动.PQ⊥BC,PQ交AB或AC于点Q,以PQ为一边向右侧作矩形PQRS,PS=2PQ.矩形PQRS与△ABC的重叠部分的面积为S(cm2),点P的运动时间为t(s).回答下列问题:

(1)AD=         cm;
(2)当点R在边AC上时,求t的值;
(3)求S与t之间的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求sinB的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=6,BC=10,点P在边BC上,点Q在边CD上,

(1)如图1,将△ADQ沿AQ折叠,点D恰好与点P重合,求CQ的长;
(2)如图2,若CQ=2,且△ABP与△PCQ相似,求BP的长;
(3)若点Q是CD边上的一点,且BC上不存在满足AP⊥PQ的点P,请探究:此时CQ的长必须满足什么条件?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题