如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60°得PC. (1)当点P运动到线段OA的中点时,点C的坐标为 ; (2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标; (3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.
如图1,抛物线 y = a x 2 + 2 x + c 与 x 轴交于 A ( − 4 , 0 ) , B ( 1 , 0 ) 两点,过点 B 的直线 y = kx + 2 3 分别与 y 轴及抛物线交于点 C , D .
(1)求直线和抛物线的表达式;
(2)动点 P 从点 O 出发,在 x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为 t 秒,当 t 为何值时, ΔPDC 为直角三角形?请直接写出所有满足条件的 t 的值;
(3)如图2,将直线 BD 沿 y 轴向下平移4个单位后,与 x 轴, y 轴分别交于 E , F 两点,在抛物线的对称轴上是否存在点 M ,在直线 EF 上是否存在点 N ,使 DM + MN 的值最小?若存在,求出其最小值及点 M , N 的坐标;若不存在,请说明理由.
【问题解决】
一节数学课上,老师提出了这样一个问题:如图1,点 P 是正方形 ABCD 内一点, PA = 1 , PB = 2 , PC = 3 .你能求出 ∠ APB 的度数吗?
小明通过观察、分析、思考,形成了如下思路:
思路一:将 ΔBPC 绕点 B 逆时针旋转 90 ° ,得到△ BP ' A ,连接 PP ' ,求出 ∠ APB 的度数;
思路二:将 ΔAPB 绕点 B 顺时针旋转 90 ° ,得到△ C P ' B ,连接 PP ' ,求出 ∠ APB 的度数.
请参考小明的思路,任选一种写出完整的解答过程.
【类比探究】
如图2,若点 P 是正方形 ABCD 外一点, PA = 3 , PB = 1 , PC = 11 ,求 ∠ APB 的度数.
如图,已知 D , E 分别为 ΔABC 的边 AB , BC 上两点,点 A , C , E 在 ⊙ D 上,点 B , D 在 ⊙ E 上. F 为 BD ̂ 上一点,连接 FE 并延长交 AC 的延长线于点 N ,交 AB 于点 M .
(1)若 ∠ EBD 为 α ,请将 ∠ CAD 用含 α 的代数式表示;
(2)若 EM = MB ,请说明当 ∠ CAD 为多少度时,直线 EF 为 ⊙ D 的切线;
(3)在(2)的条件下,若 AD = 3 ,求 MN MF 的值.
为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为 A , B 两种不同款型,其中 A 型车单价400元, B 型车单价320元.
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放 A , B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的 A 型车与 B 型车各多少辆?
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中 A , B 两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有 A 型车与 B 型车各多少辆?
汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路 l ,其间设有区间测速,所有车辆限速40千米 / 小时.数学实践活动小组设计了如下活动:在 l 上确定 A , B 两点,并在 AB 路段进行区间测速.在 l 外取一点 P ,作 PC ⊥ l ,垂足为点 C .测得 PC = 30 米, ∠ APC = 71 ° , ∠ BPC = 35 ° .上午9时测得一汽车从点 A 到点 B 用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据: sin 35 ° ≈ 0 . 57 , cos 35 ° ≈ 0 . 82 , tan 35 ° ≈ 0 . 70 , sin 71 ° ≈ 0 . 95 , cos 71 ° ≈ 0 . 33 , tan 71 ° ≈ 2 . 90 )