初中数学

如图1,在△ABC中,AB=AC,. 过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.
     
(1)求证:
(2)点为线段延长线上一点,将射线GC绕着点G逆时针旋转,与射线BD交于点E.
①若,如图2所示,求证:
②若,请直接写出的值(用含的代数式表示).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了3.2米(BB),再把竹竿竖立在地面上, 测得竹竿的影长(BC)为1.8米,求路灯离地面的高度.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在ABCD中,过点B作BE⊥CD,垂足为E,连接AE.F为AE上一点,且∠BFE=∠C.

⑴试说明:△ABF∽△EAD;
⑵若AB=8,BE=6,AD=7,求BF的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在的正方形网格中,△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).

(1)以点O(0,0)为位似中心,按比例尺(OA︰OA’)1:3在位似中心的同侧将△OAB放大为△OA’B’,放大后点A、B的对应点分别为A’、B’ .画出△OA’B’,并写出点A’、B’的坐标:A’(       ),B’(           );
(2)在(1)中,若为线段上任一点,写出变化后点的对应点的坐标(        ).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四边形ABCD是矩形,AB=3,AD=4,直线PS分别交AB、CD的延长线于P、S,交BC、AC、AD于Q、E、R,BP=1,DS=2.

(1)写出图中相似三角形(不含全等三角形);
(2)请找出图中除AB=CD、BC=AD以外的相等线段,并证明你的判断.
(3)求四边形ABQR与四边形CQRD的面积比.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如本题图1,在中,分别为三边的中点,点在边上,与四边形的周长相等,设.

(1)求线段的长(用含的代数式表示);
(2)求证:平分;
(3)连接,如本题图2,若相似,求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.

(1)求线段AB的长.
(2)当t为何值时,∠AMN=∠ANM?
(3)当t为何值时,△AMN的面积最大?并求出这个最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

△OAB的坐标分别为O(0, 0),A(0,4),B(3,0),以原点为位似中心,在第一象限将△OAB扩大,使变换得到的△OEF与△OAB对应边的比为2:1 ,

(1)画出△OEF;
(2)求四边形ABFE的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.

(1)求直线AB的解析式;
(2)当t为何值时,△APQ与△AOB相似?
(3)当t为何值时,△APQ的面积为个平方单位?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

数学课上,李老师出示范了如下框中的题目.
 
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE      DB(填“>”、“<”或“=”);

(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE      DB(填“>”、“<”或“=”).理由如下:
如图2过点E作EF∥BC,交AC于点F;(请你完成以下解答过程)

(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

网格中每个小正方形的边长都是1.

(1)将图①中的格点三角形ABC平移,使点A平移至点A`,画出平移后的三角形;
(2)在图②中画一个格点三角形DEF,使△DEF∽△ABC,且相似比为2∶1;
(3)在图③中画一个格点三角形PQR,使△PQR∽△ABC,且相似比为∶1.
(4)图②与图③中的△DEF与△PQR的相似比为                         

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,等腰三角形ABC中,若∠A=∠B=∠DPE

(1)求证:△APD∽△BEP;
(2)若,试求出AD的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如下图所示,在正方形ABCD中,P是BC上的点,且BP=3PC, Q是CD的中点.ΔADQ与ΔQCP是否相似?为什么?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.

(1)求证:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,△ABC在坐标平面内三个顶点的坐标分别为A(1,2)、B(3,3)、C(3,1).

①根据题意,请你在图中画出△ABC;
②在原图中,以B为位似中心,画出△使它与△ABC位似且相似比是3:1,并写出顶点A′和C′的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题