如图,已知A,B两点的坐标分别为A(0,),B(2,0)直线AB与反比例函数的图像交与点C和点D(-1,a).
(1)求直线AB和反比例函数的解析式;
(2)求∠ACO的度数;
(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少度时OC′⊥AB,并求此时线段AB′的长.
如图:点A在双曲线 上,AB⊥x轴于B,且△AOB的面积
S△AOB=2,则k=______.
若点(-3,y1)、(-2,y2)、(1,y3)在反比例函数的图像上,则下列结论正确的是( )
A.y1> y2> y3 | B.y2> y1> y3 | C.y3> y1> y2 | D.y3> y2> y1 |
双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是
右图中曲线是反比例函数的图象的一支.
(1)这个反比例函数图象的另一支位于哪个象限?常数n的取值范围是什么?
(2)若一次函数的图象与反比例函数的图象交于点A,与x轴交于点B,△
AOB的面积为2,求n的值.
如图,正比例函数的图象与反比例函数在第一象限
的图象交于点,过点作轴的垂线,垂足为,已知的面积为1.
(1)求反比例函数的解析式;
(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小.
一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是( )
在矩形AOBC中,OB=6,OA=4,分別以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是BC上的一个动点(不与B、C重合),过F点的反比例函数的图象与AC边交于点E.
(1)求证:AE•AO=BF•BO;
(2)若点E的坐标为(2,4),求经过O、E、F三点的抛物线的解析式;
(3)是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出此时的OF的长:若不存在,请说明理由.
如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数的图象上,则图中阴影部分的面积等于_________(结果保留π).
如图,是反比例函数和()在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若,则的值是( )
A、1 B、2 C、4 D、8
(1)求函数y1的表达式和点B的坐标;
(2)观察图象,比较当x>0时y1与y2的大小.
(11·漳州)如图,P (x,y)是反比例函数y=的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的增大,矩形OAPB的面积
A.不变 | B.增大 | C.减小 | D.无法确定 |
反比例函数
的图象如图所示,若点
、
、
是这个函数图象上的三点,且
,则
、
、
的大小关系( )
A. |
|
B. |
|
C. |
|
D. |
|