如图,点 是正方形 内一点,且点 到点 、 、 的距离分别为 、 、4,则正方形 的面积为 .
如图,将含有 角的直角三角板 放入平面直角坐标系,顶点 、 分别落在 、 轴的正半轴上, ,点 的坐标为 .将三角板 沿 轴向右作无滑动的滚动(先绕点 按顺时针方向旋转 ,再绕点 按顺时针方向旋转 ,当点 第一次落在 轴上时,则点 运动的路径与两坐标轴围成的图形面积是 .
如图,在正方形 中, ,把边 绕点 逆时针旋转 得到线段 ,连接 并延长交 于点 ,连接 ,则三角形 的面积为 .
如图, 中, , ,将 绕点 按顺时针方向旋转 ,点 对应点 落在 的延长线上.若 ,则 .
是等边三角形,点 是三条高的交点.若 以点 为旋转中心旋转后能与原来的图形重合,则 旋转的最小角度是 .
如图,已知 ,点 , 分别在 , 上,且 ,将射线 绕点 逆时针旋转得到 ,旋转角为 且 ,作点 关于直线 的对称点 ,画直线 交 于点 ,连接 , ,有下列结论:
① ;
② 的大小随着 的变化而变化;
③当 时,四边形 为菱形;
④ 面积的最大值为 ;
其中正确的是 .(把你认为正确结论的序号都填上).
如图,正方形 的边长为1,点 与原点重合,点 在 轴的正半轴上,点 在 轴的负半轴上,将正方形 绕点 逆时针旋转 至正方形 的位置, 与 相交于点 ,则点 的坐标为 .
如图,边长为4的正六边形 的中心与坐标原点 重合, 轴,将正六边形 绕原点 顺时针旋转 次,每次旋转 .当 时,顶点 的坐标为 .
如图, 与 的边 相切,切点为 .将 绕点 按顺时针方向旋转得到△ ,使点 落在 上,边 交线段 于点 .若 ,则
度.
如图,将 绕点 顺时针旋转 得到△ ,已知 , ,则线段 扫过的图形(阴影部分)的面积为 .
如图,在矩形 中, , ,以 为直径作 .将矩形 绕点
旋转,使所得矩形 的边 与 相切,切点为 ,边 与 相交于点
,则 的长为 .