定义:在平面直角坐标系中,一个图形先向右平移 个单位,再绕原点按顺时针方向旋转 角度,这样的图形运动叫作图形的 变换.
如图,等边 的边长为1,点 在第一象限,点 与原点 重合,点 在 轴的正半轴上.△ 就是 经 变换后所得的图形.
若 经 变换后得△ ,△ 经 变换后得△ ,△ 经 变换后得△ ,依此类推
△ 经 变换后得△ ,则点 的坐标是 ,点 的坐标是 .
如图, 中, , ,将 绕点 顺时针旋转得到△ ,点 的对应点 落在边 上.已知 , ,则 的长为 .
如图,边长为4的正六边形 的中心与坐标原点 重合, 轴,将正六边形 绕原点 顺时针旋转 次,每次旋转 .当 时,顶点 的坐标为 .
图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为 , (点 与点 重合),点 是夹子转轴位置, 于点 , 于点 , , , , .按图示方式用手指按夹子,夹子两边绕点 转动.
(1)当 , 两点的距离最大时,以点 , , , 为顶点的四边形的周长是 .
(2)当夹子的开口最大(即点 与点 重合)时, , 两点的距离为 .
如图, 为正方形 的对角线, 平分 ,交 与点 ,将 绕点 顺时针旋转 得到 ,若 ,则 .
已知:如图,在 中, , , .将 绕顶点 ,按顺时针方向旋转到△ 处,此时线段 与 的交点 恰好为 的中点,则线段 .
如图,矩形 的顶点 , 分别在 轴, 轴上,顶点 在第一象限, ,将线段 绕点 按逆时针方向旋转 得到线段 ,连接 ,反比例函数 的图象经过 , 两点,则 的值为 .
一副含 和 角的三角板 和 叠合在一起,边 与 重合, (如图 ,点 为边 的中点,边 与 相交于点 ,此时线段 的长是 .现将三角板 绕点 按顺时针方向旋转(如图 ,在 从 到 的变化过程中,点 相应移动的路径长共为 .(结果保留根号)
将边长为1的正方形 绕点 按顺时针方向旋转到 的位置(如图),使得点 落在对角线 上, 与 相交于点 ,则 .(结果保留根号)
如图, 与 的边 相切,切点为 .将 绕点 按顺时针方向旋转得到△ ,使点 落在 上,边 交线段 于点 .若 ,则
度.
定义:平面上一点到图形最短距离为 ,如图, ,正方形 边长为2, 为正方形中心,当正方形 绕 旋转时,则 的取值范围为 .
如图, 中, , ,将 绕点 按顺时针方向旋转 ,点 对应点 落在 的延长线上.若 ,则 .