如图,把一个菱形绕着它的对角线的交点旋转 ,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为 ,边长为2,则该“星形”的面积是 .
如图,在平面直角坐标系中, , , 由 绕点 顺时针旋转 而得,则 所在直线的解析式是 .
如图,在 中, , ,将 绕点 逆时针旋转 后得到 ,点 经过的路径为弧 ,则图中阴影部分的面积为 .
如图,在 中, , ,将 绕点 按顺时针方向旋转到△ 的位置,点 刚好落在 的延长线上,求点 从开始到结束所经过的路径长为(结果保留 .
如图,将含有 角的直角三角板 放入平面直角坐标系,顶点 、 分别落在 、 轴的正半轴上, ,点 的坐标为 .将三角板 沿 轴向右作无滑动的滚动(先绕点 按顺时针方向旋转 ,再绕点 按顺时针方向旋转 ,当点 第一次落在 轴上时,则点 运动的路径与两坐标轴围成的图形面积是 .
如图, 是等边三角形 内一点,将线段 绕点 顺时针旋转 得到线段 ,连接 .若 , , ,则四边形 的面积为 .
如图, 的顶点 在坐标原点, 边在 轴上, , ,把 绕点 按顺时针方向旋转到△ ,使得点 的坐标是 ,则在旋转过程中线段 扫过部分(阴影部分)的面积为 .
如图, 与 的边 相切,切点为 .将 绕点 按顺时针方向旋转得到△ ,使点 落在 上,边 交线段 于点 .若 ,则
度.
定义:平面上一点到图形最短距离为 ,如图, ,正方形 边长为2, 为正方形中心,当正方形 绕 旋转时,则 的取值范围为 .
如图, 中, , ,将 绕点 按顺时针方向旋转 ,点 对应点 落在 的延长线上.若 ,则 .