初中数学

如图,在矩形 ABCD 中, AD = 3 ,将矩形 ABCD 绕点 A 逆时针旋转,得到矩形 AEFG ,点 B 的对应点 E 落在 CD 上,且 DE = EF ,则 AB 的长为  

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, P Q 是方格纸中的两格点,请按要求画出以 PQ 为对角线的格点四边形.

(1)画出一个面积最小的 PAQB

(2)画出一个四边形 PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线 CD 由线段 PQ 以某一格点为旋转中心旋转得到.

来源:2018年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

定义:在平面直角坐标系中,一个图形先向右平移 a 个单位,再绕原点按顺时针方向旋转 θ 角度,这样的图形运动叫作图形的 γ ( a , θ ) 变换.

如图,等边 ΔABC 的边长为1,点 A 在第一象限,点 B 与原点 O 重合,点 C x 轴的正半轴上.△ A 1 B 1 C 1 就是 ΔABC γ ( 1 , 180 ° ) 变换后所得的图形.

ΔABC γ ( 1 , 180 ° ) 变换后得△ A 1 B 1 C 1 ,△ A 1 B 1 C 1 γ ( 2 , 180 ° ) 变换后得△ A 2 B 2 C 2 ,△ A 2 B 2 C 2 γ ( 3 , 180 ° ) 变换后得△ A 3 B 3 C 3 ,依此类推

A n 1 B n 1 C n 1 γ ( n , 180 ° ) 变换后得△ A n B n C n ,则点 A 1 的坐标是  ,点 A 2018 的坐标是  

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = BC D AB 边上一点(点 D A B 不重合),连接 CD ,将线段 CD 绕点 C 按逆时针方向旋转 90 ° 得到线段 CE ,连接 DE BC 于点 F ,连接 BE

(1)求证: ΔACD ΔBCE

(2)当 AD = BF 时,求 BEF 的度数.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,将 ΔABC 绕点 C 顺时针旋转 90 ° 得到 ΔEDC .若点 A D E 在同一条直线上, ACB = 20 ° ,则 ADC 的度数是 (    )

A. 55 ° B. 60 ° C. 65 ° D. 70 °

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图直角梯形 ABCD 中, AD / / BC AB BC AD = 2 BC = 3 ,将腰 CD D 为中心逆时针旋转 90 ° ED ,连 AE CE ,则 ΔADE 的面积是 (    )

A.1B.2C.3D.不能确定

来源:2018年浙江省杭州市临安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知点 A ( 2 , 3 ) 和点 B ( 0 , 2 ) ,点 A 在反比例函数 y = k x 的图象上,作射线 AB ,再将射线 AB 绕点 A 按逆时针方向旋转 45 ° ,交反比例函数图象于点 C ,则点 C 的坐标为  

来源:2017年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

一副含 30 ° 45 ° 角的三角板 ABC DEF 叠合在一起,边 BC EF 重合, BC = EF = 12 cm (如图 1 ) ,点 G 为边 BC ( EF ) 的中点,边 FD AB 相交于点 H ,此时线段 BH 的长是  .现将三角板 DEF 绕点 G 按顺时针方向旋转(如图 2 ) ,在 CGF 0 ° 60 ° 的变化过程中,点 H 相应移动的路径长共为  .(结果保留根号)

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,将 ΔABC 绕点 C 按顺时针方向旋转至△ A ' B ' C ,使点 A ' 落在 BC 的延长线上.已知 A = 27 ° B = 40 ° ,则 ACB ' =   度.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,把一个菱形绕着它的对角线的交点旋转 90 ° ,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为 60 ° ,边长为2,则该“星形”的面积是  

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 AOB = 60 ° ,在 AOB 的平分线 OM 上有一点 C ,将一个 120 ° 角的顶点与点 C 重合,它的两条边分别与直线 OA OB 相交于点 D E

(1)当 DCE 绕点 C 旋转到 CD OA 垂直时(如图 1 ) ,请猜想 OE + OD OC 的数量关系,并说明理由;

(2)当 DCE 绕点 C 旋转到 CD OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;

(3)当 DCE 绕点 C 旋转到 CD OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段 OD OE OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.

来源:2018年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在边长为 a 正方形 ABCD 中,把边 BC 绕点 B 逆时针旋转 60 ° ,得到线段 BM ,连接 AM 并延长交 CD N ,连接 MC ,则 ΔMNC 的面积为 (    )

A. 3 1 2 a 2 B. 2 1 2 a 2 C. 3 1 4 a 2 D. 2 1 4 a 2

来源:2018年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知如图,在正方形 ABCD 中, AD = 4 E F 分别是 CD BC 上的一点,且 EAF = 45 ° EC = 1 ,将 ΔADE 绕点 A 沿顺时针方向旋转 90 ° 后与 ΔABG 重合,连接 EF ,过点 B BM / / AG ,交 AF 于点 M ,则以下结论:① DE + BF = EF ,② BF = 4 7 ,③ AF = 30 7 ,④ S ΔMBF = 32 175 中正确的是 (    )

A.①②③B.②③④C.①③④D.①②④

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AC = 2 AB ,将矩形 ABCD 绕点 A 旋转得到矩形 AB ' C ' D ' ,使点 B 的对应点 B ' 落在 AC 上, B ' C ' AD 于点 E ,在 B ' C ' 上取点 F ,使 B ' F = AB

(1)求证: AE = C ' E

(2)求 FB B ' 的度数.

(3)已知 AB = 2 ,求 BF 的长.

来源:2018年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, ΔABC 是等腰直角三角形, ACB = 90 ° AC = BC = 2 ,把 ΔABC 绕点 A 按顺时针方向旋转 45 ° 后得到△ AB ' C ' ,则线段 BC 在上述旋转过程中所扫过部分(阴影部分)的面积是  

来源:2018年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学旋转的性质试题