如图,矩形 中, , , 是 上一点,且 , 是 上一动点,若将 沿 对折后,点 落在点 处,则点 到点 的最短距离为 .
如图①是一张矩形纸片,按以下步骤进行操作:
(Ⅰ)将矩形纸片沿 折叠,使点 落在 边上点 处,如图②;
(Ⅱ)在第一次折叠的基础上,过点 再次折叠,使得点 落在边 上点 处,如图③,两次折痕交于点 ;
(Ⅲ)展开纸片,分别连接 、 、 、 ,如图④.
(探究)
(1)证明: ;
(2)若 ,设 为 , 为 ,求 关于 的关系式.
如图,有一张长方形纸片 , , ,点 为 上一点,将纸片沿 折叠, 的对应边 恰好经过点 ,则线段 的长为 .
如图,在矩形 中, .将矩形 对折,得到折痕 ;沿着 折叠,点 的对应点为 , 与 的交点为 ;再沿着 折叠,使得 与 重合,折痕为 ,此时点 的对应点为 .下列结论:① 是直角三角形;②点 、 、 不在同一条直线上;③ ;④ ;⑤点 是 外接圆的圆心,其中正确的个数为
A.2个B.3个C.4个D.5个
如图,在矩形 中, , , 是 的中点,将 沿 折叠,点 落在矩形内点 处,连接 ,则 .
如图,把平行四边形纸片 沿 折叠,点 落在点 处, 与 相交于点 .
(1)连接 ,则 与 的位置关系是 ;
(2) 与 相等吗?证明你的结论.
如图,在 中, , , ,点 是 的中点,点 是边 上一动点,沿 所在直线把 翻折到△ 的位置, 交 于点 .若△ 为直角三角形,则 的长为 .
如图,矩形纸片 中, , .现将其沿 对折,使得点 落在边 上的点 处,折痕与边 交于点 ,则 的长为
A. B. C. D.
如图,在矩形 中,点 在 上,点 在 上,把这个矩形沿 折叠后,使点 恰好落在 边上的 点处,若矩形面积为 且 , ,则折痕 的长为
A.1B. C.2D.
如图,在 中,点 在 上,把这个直角三角形沿 折叠后,使点 恰好落到斜边 的中点 处,若 ,则折痕 的长为
A. B. C. D.6
如图, 中, , , ,将 沿过点 的直线 折叠,使点 落到 边上的点 处,折痕交 边于点 .
(1)求证:四边形 是菱形;
(2)若点 是直线 上的一个动点,请计算 的最小值.
在矩形 的 边上取一点 ,将 沿 翻折,使点 恰好落在 边上点 处.
(1)如图1,若 ,求 的度数;
(2)如图2,当 ,且 时,求 的长;
(3)如图3,延长 ,与 的角平分线交于点 , 交 于点 ,当 时,求 的值.
如图,将 沿 翻折得到 ,再将 绕 点逆时针旋转 得到 ,延长 交 于 .已知 , , ,则四边形 的面积为
A. B. C. D.
探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 , , , ,可通过构造直角三角形利用图1得到结论: 他还利用图2证明了线段 的中点 的坐标公式: , .
(1)请你帮小明写出中点坐标公式的证明过程;
运用:(2)①已知点 , ,则线段 长度为 ;
②直接写出以点 , , , 为顶点的平行四边形顶点 的坐标: ;
拓展:(3)如图3,点 在函数 的图象 与 轴正半轴夹角的平分线上,请在 、 轴上分别找出点 、 ,使 的周长最小,简要叙述作图方法,并求出周长的最小值.