初中数学

如图,在 Rt Δ ABC 中, C = 90 ° AB 的垂直平分线分别交 AB AC 于点 D E BE = 8 O ΔBCE 的外接圆,过点 E O 的切线 EF AB 于点 F ,则下列结论正确的是    . (写出所有正确结论的序号)

AE = BC

AED = CBD

③若 DBE = 40 ° ,则 DE ^ 的长为 8 π 9

DF EF = EF BF

⑤若 EF = 6 ,则 CE = 2 . 24

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

(本题14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.
(1)若四边形OABC为矩形,如图1,
①求点B的坐标;
②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;
(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥轴,与对角线AC、边OC分别交于点E、点F.若B1E: B1F=1:3,点B1的横坐标为,求点B1的纵坐标,并直接写出的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=6,BC=9,AC=8,点P在△ABC内部,过点P分别画AB、BC、CA的平行线,与各边分别相交得线段DE、FG、HK,已知线段DE、FG、HK的长度都为d,求d的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 内接于 O ,点 C 在劣弧 AB 上(不与点 A B 重合),点 D 为弦 BC 的中点, DE BC DE AC 的延长线交于点 E ,射线 AO 与射线 EB 交于点 F ,与 O 交于点 G ,设 GAB = α ACB = β EAG + EBA = γ

(1)点点同学通过画图和测量得到以下近似数据:

α

30 °

40 °

50 °

60 °

β

120 °

130 °

140 °

150 °

γ

150 °

140 °

130 °

120 °

猜想: β 关于 α 的函数表达式, γ 关于 α 的函数表达式,并给出证明;

(2)若 γ = 135 ° CD = 3 ΔABE 的面积为 ΔABC 的面积的4倍,求 O 半径的长.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.

(1)如图1,求证:△AFB≌△ADC;
(2)请判断图1中四边形BCEF的形状,并说明理由;
(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;
(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求的值;
(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,AB=6,∠ABC=60°,点E在AD上,且AE=2,点P是对角线BD上的一个动点,则PE+PA的最小值是                    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° ,分别过点 B C BAC 平分线的垂线,垂足分别为点 D E BC 的中点是 M ,连接 CD MD ME .则下列结论错误的是 (    )

A.

CD = 2 ME

B.

ME / / AB

C.

BD = CD

D.

ME = MD

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:

(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形 A B C D 中, E C D 的中点, F B E 上的一点,连结 C F 并延长交 A B 于点 M M N C M 交射线 A D 于点N.

(1)当F为BE中点时,求证:AM=CE;
(2)若 A B B C = E F B F = 2 ,求 A N N D 的值;
(3)若 A B B C = E F B F ,当 n 为何值时, M N B E

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方形ABCD中,AB=4.
(1)正方形ABCD的周长为         

(2)如图1,点E、F分别在BC和AD上,点P是线段EF上的动点,过点P作EF的垂线L,若直线L与正方形CD、AB的交点分别在G、H.
①求证:EF=GH;
②已知,BE=2,AF=1,若线段PE的长度为a,求a的最小值;
③如图2,在②的条件下,已知AH=,PE=2PF,求图中阴影部分的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.

(1)求证:△ADP≌△ECP;
(2)若BP=n•PK,试求出n的值;
(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中, AD BC 边上的高,以 AD 为直径的 O AB 于点 E ,交 AC 于点 F ,过点 F FG AB ,垂足为 H ,交 AE ̂ 于点 G ,交 AD 于点 M ,连接 AG DE DF

(1)求证: GAD + EDF = 180 °

(2)若 ACB = 45 ° AD = 4 tan ABC = 2 ,求 HF 的长.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为,其中m,n为常数.

(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;
(2)利用(1)中的格点多边形确定m,n的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )

A.4个 B.3个 C.2个 D.1个
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质试题