(本小题满分10分)在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,
对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F。
(1)求证:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直线EF与线段AD,BC分别相交于点G,H,求的值。
11·西宁)(本小题满分8分)如图12 ,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.
(1)求证:四边形AODE是菱形;
(2).若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,
其余条件不变,则四边形AODE是_ ▲ .
(本题10分) (湖南湘西24,10分)如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.
(1)求AC的长.
(2)求∠AOB的度数.
(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.
⑴说明四边形ACEF是平行四边形;
⑵当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
(11·台州)(10分)丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE、CD的长度(精确到个位,≈1.7).
(11·台州)(8分)如图,分别延长□ABCD的边BA、DC到点E、H,使得AE
=AB,CH=CD,连接EH,分别交AD、BC于点F、G.
求证:△AEF≌△CHG.
已知:如图9,等腰梯形ABCD的边BC在x轴上,点A在y轴的正方向上,A( 0, 6 ),D ( 4,6),且AB=.
(1)求点B的坐标;
(2)求经过A、B、D三点的抛物线的解析式;
(3)在(2)中所求的抛物线上是否存在一点P,
|
使得?若存在,请求出该点坐标,
若不存在,请说明理由.如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;
(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)
(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.
证明题24.如图8,在 ABCD中,DE=BF.
求证:四边形AFCE是平行四边形.
(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。
数学课上,李老师出示了这样一道题目:如图,正方形的边长为,为边延长线上的一点,为的中点,的垂直平分线交边于,交边的延长线于.当时,与的比值是多少?
经过思考,小明展示了一种正确的解题思路:过作直线平行于交,分别于,,如图,则可得:,因为,所以.可求出和的值,进而可求得与的比值.
(1) 请按照小明的思路写出求解过程.
(2) 小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.
已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连接DE.
(1)在下图中,用尺规作∠BAD的平分线AE(保留作图痕迹不写作法),并证明四边形ABED是菱形.
(2)若∠ABC=60°,EC=2BE.求证:ED⊥DC.
如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=,求EB的长.
如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直
线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).
(1)求证:h1=h2;
(2)设正方形ABCD的面积为S,求证:S=(h1+h2)2+h12;
(3)若h1+h2=1,当h1变化时,说明正方形ABCD的面积S随h1的变化情况.
如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.
求证:DE=BE.