(11·台州)(10分)丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE、CD的长度(精确到个位,≈1.7).
如图,在直角坐标系中,⊙P与y轴相切于点C,与x轴交于A(x1,0),B(x2,0)两点,其中x1,x2是方程x2-10x+16=0的两个根,且x1<x2,连接BC,AC.(1)求过A、B、C三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使△QAC的周长最小,若存在求出点Q的坐标,若不存在,请说明理由;(3)点M在第一象限的抛物线上,当△MBC的面积最大时,求点M的坐标.
4月20日8时2分,四川省雅安市芦山县发生了7.0级地震,当地的部分房屋严重受损,上万灾民无家可归,灾情牵动亿万中国人的心。某市积极筹集救灾物质 260吨物资从该市区运往雅安甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资。已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:
(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为辆,前往甲、乙两地的总运费为w元,求出w与的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费
如图,在矩形纸片ABCD中,AB=3,BC=4.把△BCD沿对角线BD折叠,使点C落在E处,BE交AD于点F;(1)求证:AF=EF;(2)求tan∠ABF的值;(3)连接AC交BE于点G, 求AG的长.
如图,点P是菱形ABCD对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求对角线BD的长.
如图,已知A(-4,n),B(1,-4)是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及△的面积;(3)求不等式的解集(请直接写出答案).