如图,在直角坐标系中,⊙P与y轴相切于点C,与x轴交于A(x1,0),B(x2,0)两点,其中x1,x2是方程x2-10x+16=0的两个根,且x1<x2,连接BC,AC.(1)求过A、B、C三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使△QAC的周长最小,若存在求出点Q的坐标,若不存在,请说明理由;(3)点M在第一象限的抛物线上,当△MBC的面积最大时,求点M的坐标.
某商店以每件50元的价格购进一批新型产品,如果按每件60元出售,那么每周可销售500件.根据市场规律,这种产品的销售单价每提高1元,其销售量每周相应减少10件,但每件产品的销售单价不低于60元,且不能高于85元,设每周的销售量为 y (件 ) ,这种产品的销售单价为 x (元 ) ,解答下列问题:
(1)请直接写出 y 与 x 之间的函数关系式;
(2)商家要想每周获得8000元的销售利润,销售单价应定为多少元?
(3)销售单价为多少元时,每周获得的销售利润最大?最大利润是多少元?
如图,在 ΔABC 中, AB = AC ,点 D 是 BC 边长一点, DE ⊥ AB ,垂足为点 E ,点 O 在线段 ED 的延长线上,且 ⊙ O 经过 C , D 两点.
(1)判断直线 AC 与 ⊙ O 的位置关系,并说明理由;
(2)若 ⊙ O 的半径为2, CD ̂ 的长为 10 9 π ,请求出 ∠ A 的度数.
某数学小组开展测量物体高度的实践活动,他们要测量某建筑物上悬挂的电子显示屏的高度.如图所示,他们先在点 A 测得电子显示屏底端点 D 的仰角 ∠ DAC = 15 ° ,然后向建筑物的方向前进 10 m 到达点 B ,又测得电子显示屏顶端点 E 的仰角 ∠ EBC = 45 ° ,测得电子显示屏底端点 D 的仰角 ∠ DBC = 30 ° .(点 A , B , C 在同一条直线上,且与点 D , E 在同一平面内,不考虑测角仪高度)
(1)求此时他们离建筑的距离 BC 的长;
(2)求电子显示屏 DE 的高度.
(以上结果用含根号的式子表示)
为提高中小学生的身体素质,各校大力开展校园足球活动,某体育用品商店抓住这一商机,第一次用30000元购进 A , B 两种型号的足球,并很快销售完毕,共获利12200元,其进价和售价如下表:
A
B
进价(元 / 个)
120
200
售价(元 / 个)
170
280
(1)该体育用品商店购进 A , B 两种型号的足球各多少个?
(2)该体育用品商店第二次准备用不超过40000元的资金再次购进 A , B 两种型号的足球共260个,最少购进 A 种型号的足球多少个?
为进一步发展学生特长,某校要开设编织、摄影、航模、机器人四门校本课程,规定每名学生必须且只能选修一门校本课程,学校对学生选修本课程的情况进行了抽样调查,根据调查结果绘制了下面两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题.
(1)本次调查,一共调查了 名学生;
(2)补全条形统计图和扇形统计图;
(3)若该学校共有1700名学生据此估计有多少名学生选修航模;
(4)将2名选修摄影的学生和2名选修编织的学生编为一组,从中随机抽取2人,请用列表或画树状图的方法求出2人都选修编织的概率.