初中数学

已知:如图,在直角梯形ABCD中,AD // BC,AB⊥AD,BC = CD,BE⊥CD,垂足为点E,点F在BD上,联结AF、EF.

求证:AD = ED;
如果AF // CD,求证:四边形ADEF是菱形

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,△ABC和△ADC都是边长相等的等边三角形,点EF同时分别从点B A出发,各自沿BAAD方向运动到点AD停止,运动的速度相同,连接ECFC

(1)写出在点E、F运动过程中,所有全等的三角形。
(2)点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;
(3)点EF运动过程中,以点AECF为顶点的四边形的面积变化吗?请说明理由;
(4)接EF,在图中找出和∠ACE相等的所有角,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,将边长为3cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD的中点 M处,点C落在点N处,MNCD交于点P, 连接EP

(1) △AEM的周长=_____cm;(2)求证:EP=AE+DP;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图,△ABC中,ADBC边上的中线,四边形ABDE是平行四边形
(1)求证:四边形ADCE是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCE是菱形?说明你的理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知正方形ABCD中,E为对角线BD上一点,过E点作EFBDBCF,连接DFGDF中点,连接EGCG

(1)求证:EG=CG
(2)将图①中△BEFB点逆时针旋转45º,如图②所示,取DF中点G,连接EGCG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEFB点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN=        °时,结论AM=MN仍然成立.
(直接写出答案,不需要证明)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AD∥BC,∠DCB=45°,CD =2,BD⊥CD .过点C作CE⊥AB于E,交对角线BD于F.点G为BC中点,连结EG、AF.
求EG的长
求证:CF =AB +AF

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠BAC=90°,∠B=30°,线段AD是BC边上的中线.
如图(Ⅰ),将△ADC沿直线BC平移,使点D与点C重合,得到△FCE,连结AF.求证:四边形ADEF是等腰梯形;

如图(Ⅱ),在(1)的条件下,再将△FCE绕点C顺时针旋转,设旋转角为(0°<<90°)连结AF、DE.

AC⊥CF时,求旋转角的度数;②当=60°时,请判断四边形ADEF的形状,并给予证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折痕CE=5,且
判断△OCD与△ADE是否相似?请说明理由;
求直线CE与x轴交点P的坐标;
是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,□ABCD中,AB=4,BC=3,∠BAD=120°,动点E在BC上(不与B
重合).作EF⊥AB于F,FE、DC的延长线交于点G.设BE=x,△DEF的面积为S.
求S关于x的函数表达式,并写出x的取值范围
当点E在何处时,S有最大值,最大值为多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,ADBC,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.
(1)若动点MN同时出发,经过几秒钟两点相遇?
(2)若点E在线段BC上,且BE=3cm,若动点MN同时出发,相遇时停止运动,经过几秒钟,点AEMN组成平行四边形?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,用同样规格的花色和白色两种正方形地砖铺设矩形地面,请观察图形并解答有关问题:(1)有第n个图形中,白色地砖总块数为           
(2)在第n个图形中,花色地砖总块数为           
(3)是否存在白色地砖与花色地砖数量相等的情形?若存在求出n的值,若不存在说明理由。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,点P从点A开始沿AD边向D以1cm/s的速度移动,点Q从点C开始沿CB边向B以2cm/s的速度移动,如果P、Q分别从A、C同时出发,设移动的时间为t(s),求:

(1)t为何值时,四边形PQCD为平行四边形;
(2)t为何值时,四边形ABQP为矩形;
(3)t为何值时,梯形PQCD是等腰梯形。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知等腰三角形ABC中,AB=AC,AD平分∠BAC交于BC于 D点,在AD上任取一点P,(A点除外),过P点作EF∥AB,分别交AC、BC于点E、F,作PM∥AC,交AB于点M,连结ME。
(1)求证:四边形AEPM为菱形;
(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题