初中数学

已知:平行四边形ABCD中,过对角线AC中点O的直线EF交AD于F,BC于E。
求证:BE=DF

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动

(1)①当t=3秒时,点P走过的路径长为       ;②当t=          秒时,点P与点E重合;③当t=     秒时,PE∥AB;
(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;
(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是( )

A.AC="BD          "   B.∠OBC=∠OCB
C.S△AOB=S△DOC                 D.∠BCD=∠BDC

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·天水)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识
进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD内作等边△BCE,
并与正方形的对角线交于点F、G,制作如图(2)的图标,请我计算一下图案中阴影图形的
面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题6分)矩形纸片ABCD中,AB=5,AD=4.

(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是             ;(不必说明理由)
(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° ,分别过点 B C BAC 平分线的垂线,垂足分别为点 D E BC 的中点是 M ,连接 CD MD ME .则下列结论错误的是 (    )

A.

CD = 2 ME

B.

ME / / AB

C.

BD = CD

D.

ME = MD

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中, AD BC 边上的高,以 AD 为直径的 O AB 于点 E ,交 AC 于点 F ,过点 F FG AB ,垂足为 H ,交 AE ̂ 于点 G ,交 AD 于点 M ,连接 AG DE DF

(1)求证: GAD + EDF = 180 °

(2)若 ACB = 45 ° AD = 4 tan ABC = 2 ,求 HF 的长.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图.在边长为6的正方形 ABCD 中,点 E F 分别在 BC CD 上, BC = 3 BE BE = CF AE BF ,垂足为 G O 是对角线 BD 的中点,连接 OG 、则 OG 的长为   

来源:2021年广西贺州市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

已知矩形长和宽分别为4和2,是否存在另一个矩形,它的周长和面积分别是已知矩形的?若存在请计算这个矩形的两边长,若不存在请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,已知△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.

(1)∠BFG与∠BGF是否相等?为什么?
(2)求由DG、GE和所围成的图形的面积(阴影部分).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为(   )

A.3 B.4 C.5 D.6
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知菱形ABCD边长为5cm,tan∠DAB=,连接AC、BD,过点B作BE⊥AB分别交AC、CD于E、F。若点P为AD上一点,且∠DPE+∠DAB=900,则AP长为          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.
(1)如图1,△ABC和△APE均为正三角形,连接CE.
①求证:△ABP≌△ACE.
②∠ECM的度数为     °.
(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为      °.
②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为      °.
(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,有一块边长为4的正方形塑料摸板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 ▲   .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质试题