(11·天水)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线
AC平分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB
的最小值是_ ▲ .
(11·天水)如图,有一块矩形纸片ABCD,AB=8,AD=6.将纸片折叠,使
得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,
则CF的长为
如图,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,
垂足为G,延长BG交AC于点F,则CF= .
(11·贺州)
如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.
(11·贺州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,
折痕为EF.若BF=4,FC=2,则∠DEF的度数是_ ▲ .
(11·贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交
于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD
面积的
(11·佛山)阅读材料
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;
比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;
我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=CD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
(1)写出筝形的两个性质(定义除外);
(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明;
(11·佛山)在矩形ABCD中,两条对角线AC、BD相交于点O,若AB=OB=4,则AD= ;
(11·佛山)依次连接菱形的各边中点,得到的四边形是( )
A.矩形 | B.菱形 | C.正方形 | D.梯形 |
如图,在□ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是 cm.
矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:
(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.
(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .
(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.
在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是___________.
以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.
如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为( )
A.48cm | B.36cm |
C.24cm | D.18cm |