初中数学

在平面内,给定不在同一条直线上的点,如图所示,点到点的距离均等于为常数),到点的距离等于的所有点组成图形的平分线交图形于点,连接

(1)求证:

(2)过点,垂足为,作,垂足为,延长交图形于点,连接.若,求直线与图形的公共点个数.

来源:2019年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 P 是弦 AC 上一动点(不与 A C 重合),过点 P PE AB ,垂足为 E ,射线 EP AC ̂ 于点 F ,交过点 C 的切线于点 D

(1)求证: DC = DP

(2)若 CAB = 30 ° ,当 F AC ̂ 的中点时,判断以 A O C F 为顶点的四边形是什么特殊四边形?说明理由.

来源:2016年江西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在四边形中,不平行于,过点的外接圆于点,连接

(1)求证:四边形为平行四边形;

(2)连接,求证:平分

来源:2017年安徽省中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

如图,的直径,延长线上一点,的切线,为切点,于点,交于点

(1)求证:

(2)若,求的长.

来源:2020年北京市中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

已知:如图, ΔABC 为锐角三角形, AB = AC CD / / AB

求作:线段 BP ,使得点 P 在直线 CD 上,且 ABP = 1 2 BAC

作法:①以点 A 为圆心, AC 长为半径画圆,交直线 CD C P 两点;

②连接 BP

线段 BP 就是所求作的线段.

(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);

(2)完成下面的证明.

证明: CD / / AB

ABP =   BPC  

AB = AC

B A 上.

C P 都在 A 上,

BPC = 1 2 BAC (    ) (填推理的依据).

ABP = 1 2 BAC

来源:2020年北京市中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

(年贵州省贵阳市)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=

(1)求AC的长度;
(2)求图中阴影部分的面积.(计算结果保留根号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年贵州省遵义市)如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.

(1)求证:D是BC的中点;
(2)若DE=3,BD—AD=2,求⊙O的半径;
(3)在(2)的条件下,求弦AE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(内蒙古 呼 和 浩 特 )如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC
(1)求证:PA是⊙O的切线;
(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为的中点,且∠DCF=∠P,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知△ABC内接于⊙O,过点A作直线EF.

(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(要求写出两种情况):               或者              
(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.
(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A,B重合),D是半圆的中点,C,D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.

①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆周角定理解答题