如图,在 中, ,高 ,正方形 一边在 上,点 , 分别在 , 上, 交 于点 ,则 的长为
A. |
15 |
B. |
20 |
C. |
25 |
D. |
30 |
在中,,,,,分别是,,的中点,连接,.
(1)求证:四边形是矩形;
(2)请用无刻度的直尺在图中作出的平分线(保留作图痕迹,不写作法).
操作体验:如图,在矩形中,点、分别在边、上,将矩形沿直线折叠,使点恰好与点重合,点落在点处.点为直线上一动点(不与、重合),过点分别作直线、的垂线,垂足分别为点和,以、为邻边构造平行四边形.
(1)如图1,求证:;
(2)特例感知:如图2,若,,当点在线段上运动时,求平行四边形的周长;
(3)类比探究:若,.
①如图3,当点在线段的延长线上运动时,试用含、的式子表示与之间的数量关系,并证明;
②如图4,当点在线段的延长线上运动时,请直接用含、的式子表示与之间的数量关系.(不要求写证明过程)
(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)
(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?
(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.
如图,在平面直角坐标系中,与轴的正半轴交于、两点,与轴的正半轴相切于点,连接、,已知半径为2,,双曲线经过圆心.
(1)求双曲线的解析式;
(2)求直线的解析式.
如图,在矩形纸片 中,将 沿 翻折,使点 落在 上的点 处, 为折痕,连接 ;再将 沿 翻折,使点 恰好落在 上的点 处, 为折痕,连接 并延长交 于点 ,若 , ,则线段 的长等于 .
(1)如图1,有一个残缺圆,请作出残缺圆的圆心(保留作图痕迹,不写作法).
(2)如图2,设是该残缺圆的直径,是圆上一点,的角平分线交于点,过作的切线交的延长线于点.
①求证:;
②若,,求残缺圆的半圆面积.
如图,在四边形 中, , , , ,点 是线段 的三等分点,且靠近点 , 的两边与线段 分别交于点 、 ,连接 分别交 、 于点 、 .若 , ,则
A. |
|
B. |
|
C. |
|
D. |
|
如图,在平行四边形中,点是的中点,点是边上的点,,平行四边形的面积为,由、、三点确定的圆的周长为.
(1)若的面积为30,直接写出的值;
(2)求证:平分;
(3)若,,,求的值.
如图,抛物线与轴交于、两点(点在点的左侧),与轴交于点,连接、.点沿以每秒1个单位长度的速度由点向点运动,同时,点沿以每秒2个单位长度的速度由点向点运动,当一个点停止运动时,另一个点也随之停止运动,连接.过点作轴,与抛物线交于点,与交于点,连接,与交于点.设点的运动时间为秒.
(1)求直线的函数表达式;
(2)①直接写出,两点的坐标(用含的代数式表示,结果需化简)
②在点、运动的过程中,当时,求的值;
(3)试探究在点,运动的过程中,是否存在某一时刻,使得点为的中点?若存在,请直接写出此时的值与点的坐标;若不存在,请说明理由.