初中数学

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

问题探究:

小红遇到这样一个问题:如图1, ΔABC 中, AB = 6 AC = 4 AD 是中线,求 AD 的取值范围.她的做法是:延长 AD E ,使 DE = AD ,连接 BE ,证明 ΔBED ΔCAD ,经过推理和计算使问题得到解决.

请回答:(1)小红证明 ΔBED ΔCAD 的判定定理是:   

(2) AD 的取值范围是  

方法运用:

(3)如图2, AD ΔABC 的中线,在 AD 上取一点 F ,连结 BF 并延长交 AC 于点 E ,使 AE = EF ,求证: BF = AC

(4)如图3,在矩形 ABCD 中, AB BC = 1 2 ,在 BD 上取一点 F ,以 BF 为斜边作 Rt Δ BEF ,且 EF BE = 1 2 ,点 G DF 的中点,连接 EG CG ,求证: EG = CG

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知在矩形 ABCD 中, AB = 1 BC = 3 ,点 P AD 边上的一个动点,连结 BP ,点 C 关于直线 BP 的对称点为 C 1 ,当点 P 运动时,点 C 1 也随之运动.若点 P 从点 A 运动到点 D ,则线段 C C 1 扫过的区域的面积是 (    )

A.

π

B.

π + 3 3 4

C.

3 3 2

D.

2 π

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, BOD = 45 ° BO = DO ,点 A OB 上,四边形 ABCD 是矩形,连接 AC BD 交于点 E ,连接 OE AD 于点 F .下列4个判断:① OE BD ;② ADB = 30 ° ;③ DF = 2 AF ;④若点 G 是线段 OF 的中点,则 ΔAEG 为等腰直角三角形,其中,判断正确的是   .(填序号)

来源:2021年山东省枣庄市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 5 AD = 3 ,点 E BC 上一点,把 ΔCDE 沿 DE 翻折,点 C 恰好落在 AB 边上的 F 处,则 CE 的长是 (    )

A.

1

B.

4 3

C.

3 2

D.

5 3

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 + 2 AD = 3 .把 AD 沿 AE 折叠,使点 D 恰好落在 AB 边上的 D ' 处,再将 ΔAED ' 绕点 E 顺时针旋转 α ,得到△ A ' ED ' ' ,使得 EA ' 恰好经过 BD ' 的中点 F A ' D ' ' AB 于点 G ,连接 AA ' .有如下结论:① A ' F 的长度是 6 - 2 ;②弧 D ' D ' ' 的长度是 5 3 12 π ;③△ A ' AF A ' EG ;④△ AA ' F ΔEGF .上述结论中,所有正确的序号是      

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在矩形纸片 ABCD 中, AB = 3 ,点 E 在边 BC 上,将 ΔABE 沿直线 AE 折叠,点 B 恰好落在对角线 AC 上的点 F 处,若 EAC = ECA ,则 AC 的长是 (    )

A. 3 3 B.4C.5D.6

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,将矩形纸片 ABCD 折叠 ( AD > AB ) ,使 AB 落在 AD 上, AE 为折痕,然后将矩形纸片展开铺在一个平面上, E 点不动,将 BE 边折起,使点 B 落在 AE 上的点 G 处,连接 DE ,若 DE = EF CE = 2 ,则 AD 的长为   

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E 在边 BC 上,点 F BC 的延长线上,且 BE = CF

求证:(1) ΔABE ΔDCF

(2)四边形 AEFD 是平行四边形.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,对于不在坐标轴上的任意一点 A ( x , y ) ,我们把点 B ( 1 x 1 y ) 称为点 A 的"倒数点".如图,矩形 OCDE 的顶点 C ( 3 , 0 ) ,顶点 E y 轴上,函数 y = 2 x ( x > 0 ) 的图象与 DE 交于点 A .若点 B 是点 A 的"倒数点",且点 B 在矩形 OCDE 的一边上,则 ΔOBC 的面积为   

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E F 分别是边 AB CD 的中点.求证: DE = BF

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的两边 OC OA 分别在坐标轴上,且 OA = 2 OC = 4 ,连接 OB .反比例函数 y = k 1 x ( x > 0 ) 的图象经过线段 OB 的中点 D ,并与 AB BC 分别交于点 E F .一次函数 y = k 2 x + b 的图象经过 E F 两点.

(1)分别求出一次函数和反比例函数的表达式;

(2)点 P x 轴上一动点,当 PE + PF 的值最小时,点 P 的坐标为   

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在河对岸有一矩形场地 ABCD ,为了估测场地大小,在笔直的河岸 l 上依次取点 E F N ,使 AE l BF l ,点 N A B 在同一直线上.在 F 点观测 A 点后,沿 FN 方向走到 M 点,观测 C 点发现 1 = 2 .测得 EF = 15 米, FM = 2 米, MN = 8 米, ANE = 45 ° ,则场地的边 AB   米, BC   米.

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展平后再次折叠,使点 A 落在 EF 上的点 A ' 处,得到折痕 BM BM EF 相交于点 N .若直线 BA ' 交直线 CD 于点 O BC = 5 EN = 1 ,则 OD 的长为 (    )

A. 1 2 3 B. 1 3 3 C. 1 4 3 D. 1 5 3

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AC 为矩形 ABCD 的对角线,已知 AD = 3 CD = 4 ,点 P 沿折线 C - A - D 以每秒1个单位长度的速度运动(运动到 D 点停止),过点 P PE BC 于点 E ,则 ΔCPE 的面积 y 与点 P 运动的路程 x 间的函数图象大致是 (    )

A.

B.

C.

D.

来源:2021年湖北省黄冈市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学矩形的性质试题