如图, 、 , 、 分别为矩形 的边 、 、 、 的中点,连接 、 、 , , .已知 , ,则 的长为 .
问题探究:
小红遇到这样一个问题:如图1, 中, , , 是中线,求 的取值范围.她的做法是:延长 到 ,使 ,连接 ,证明 ,经过推理和计算使问题得到解决.
请回答:(1)小红证明 的判定定理是: ;
(2) 的取值范围是 ;
方法运用:
(3)如图2, 是 的中线,在 上取一点 ,连结 并延长交 于点 ,使 ,求证: .
(4)如图3,在矩形 中, ,在 上取一点 ,以 为斜边作 ,且 ,点 是 的中点,连接 , ,求证: .
如图, 为等腰直角三角形,延长 至点 使 , 是矩形,其对角线 , 交于点 ,连接 交 于点 .
(1)求证: ;
(2)求 的值.
如图, 是 的直径, 和 是它的两条切线,过 上一点 作直线 ,分别交 、 于点 、 ,且 .
(1)求证:直线 是 的切线;
(2)求证: .
如图,在矩形 中, ,将矩形 绕点 逆时针旋转,得到矩形 ,点 的对应点 落在 上,且 ,则 的长为 .
如图,在河对岸有一矩形场地 ,为了估测场地大小,在笔直的河岸 上依次取点 , , ,使 , ,点 , , 在同一直线上.在 点观测 点后,沿 方向走到 点,观测 点发现 .测得 米, 米, 米, ,则场地的边 为 米, 为 米.
如图,已知在矩形 中, , ,点 是 边上的一个动点,连结 ,点 关于直线 的对称点为 ,当点 运动时,点 也随之运动.若点 从点 运动到点 ,则线段 扫过的区域的面积是
A. |
|
B. |
|
C. |
|
D. |
|
对给定的一张矩形纸片 进行如下操作:先沿 折叠,使点 落在 边上(如图① ,再沿 折叠,这时发现点 恰好与点 重合(如图②
(1)根据以上操作和发现,求 的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点 与点 重合,折痕与 相交于点 ,再将该矩形纸片展开.求证: ;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 点,要求只有一条折痕,且点 在折痕上,请简要说明折叠方法.(不需说明理由)
如图,点 为矩形 的对称中心,点 从点 出发沿 向点 运动,移动到点 停止,延长 交 于点 ,则四边形 形状的变化依次为
A.平行四边形 正方形 平行四边形 矩形
B.平行四边形 菱形 平行四边形 矩形
C.平行四边形 正方形 菱形 矩形
D.平行四边形 菱形 正方形 矩形
如图,矩形纸片 , , , 为边 上一点.将 沿 所在的直线折叠,点 恰好落在 边上的点 处,过点 作 ,垂足为点 ,取 的中点 ,连接 ,则 .
如图,在矩形纸片 中, ,点 在边 上,将 沿直线 折叠,点 恰好落在对角线 上的点 处,若 ,则 的长是
A. B.4C.5D.6
折叠矩形纸片 时,发现可以进行如下操作:①把 翻折,点 落在 边上的点 处,折痕为 ,点 在 边上;②把纸片展开并铺平;③把 翻折,点 落在线段 上的点 处,折痕为 ,点 在 边上,若 , ,则 .
如图,在矩形 中, , ,点 在 上, ,点 是边 上一动点,以 为斜边作 .若点 在矩形 的边上,且这样的直角三角形恰好有两个,则 的值是 .
(1)如图1,将矩形 折叠,使 落在对角线 上,折痕为 ,点 落在点 处,若 ,则 的度数为 .
(2)小明手中有一张矩形纸片 , , .
【画一画】
如图2,点 在这张矩形纸片的边 上,将纸片折叠,使 落在 所在直线上,折痕设为 (点 , 分别在边 , 上),利用直尺和圆规画出折痕 (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
【算一算】
如图3,点 在这张矩形纸片的边 上,将纸片折叠,使 落在射线 上,折痕为 ,点 , 分别落在点 , 处,若 ,求 的长;
【验一验】
如图4,点 在这张矩形纸片的边 上, ,将纸片折叠,使 落在 所在直线上,折痕为 ,点 , 分别落在点 , 处,小明认为 所在直线恰好经过点 ,他的判断是否正确,请说明理由.