如图1,已知在平面直角坐标系中,四边形是矩形,点,分别在轴和轴的正半轴上,连结,,,是的中点.
(1)求的长和点的坐标;
(2)如图2,是线段上的点,,点是线段上的一个动点,经过,,三点的抛物线交轴的正半轴于点,连结交于点.
①将沿所在的直线翻折,若点恰好落在上,求此时的长和点的坐标;
②以线段为边,在所在直线的右上方作等边,当动点从点运动到点时,点也随之运动,请直接写出点运动路径的长.
如图,已知正方形的边长为1,正方形的面积为,点在边上,点在的延长线上,设以线段和为邻边的矩形的面积为,且.
(1)求线段的长;
(2)若点为边的中点,连接,求证:.
如图:在平面直角坐标系中,直线与轴交于点,经过点的抛物线的对称轴是.
(1)求抛物线的解析式;
(2)平移直线经过原点,得到直线,点是直线上任意一点,轴于点,轴于点,若点在线段上,点在线段的延长线上,连接,,且.求证:;
(3)若(2)中的点坐标为,点是轴上的点,点是轴上的点,当时,抛物线上是否存在点,使四边形是矩形?如果存在,请求出点的坐标,如果不存在,请说明理由.
在平面直角坐标系中,为原点,点,点在轴的正半轴上,.矩形的顶点,,分别在,,上,.
(Ⅰ)如图①,求点的坐标;
(Ⅱ)将矩形沿轴向右平移,得到矩形,点,,,的对应点分别为,,,.设,矩形与重叠部分的面积为.
①如图②,当矩形与重叠部分为五边形时,,分别与相交于点,,试用含有的式子表示,并直接写出的取值范围;
②当时,求的取值范围(直接写出结果即可).
在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.
(Ⅰ)如图①,当点落在边上时,求点的坐标;
(Ⅱ)如图②,当点落在线段上时,与交于点.
①求证;
②求点的坐标.
(Ⅲ)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).
综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,,是延长线上一点,且,连接,交于点,以为一边在的左下方作正方形,连接.试判断线段与的位置关系.
探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:
证明:,.
,.
四边形是矩形,.
.(依据
,..
即是的边上的中线,
又,.(依据
垂直平分.
反思交流:
(1)①上述证明过程中的“依据1”“依据2”分别是指什么?
②试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明;
(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点在线段的垂直平分线上,请你给出证明;
探索发现:
(3)如图3,连接,以为一边在的右上方作正方形,可以发现点,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.
综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为的三角形称为,4,型三角形,例如:三边长分别为9,12,15或,,的三角形就是,4,型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片中,,.
第一步:如图2,将图1中的矩形纸片沿过点的直线折叠,使点落在上的点处,折痕为,再沿折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点与点重合,折痕为,然后展平,隐去.
第三步:如图4,将图3中的矩形纸片沿折叠,得到△,再沿折叠,折痕为,与折痕交于点,然后展平.
问题解决
(1)请在图2中证明四边形是正方形.
(2)请在图4中判断与的数量关系,并加以证明;
(3)请在图4中证明,4,型三角形;
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是,4,型三角形?请找出并直接写出它们的名称.
问题提出
(1)如图①,已知直线及外一点,试在直线上确定、两点,使,并画出这个.
问题探究
(2)如图②,是边长为28的正方形的对称中心,是边上的中点,连接.试在正方形的边上确定点,使线段和将正方形分割成面积之比为的两部分.求点到点的距离.
问题解决
(3)如图③,有一个矩形花园,,.根据设计要求,点、在对角线上,且,并在四边形区域内种植一种红色花卉,在矩形内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植至少需费用多少元?(结果保留整数.参考数据:,
如图,在中,,是的外接圆,点在上,且,过点作的垂线,与的延长线相交于点,并与的延长线相交于点.
(1)求证:是的切线;
(2)若的半径,,求的长.
问题提出
(1)如图①,已知 ,请画出 关于直线 对称的三角形.
问题探究
(2)如图②,在矩形 中, , , , ,是否在边 、 上分别存在点 、 ,使得四边形 的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材 , 米, 米,现想从此板材中裁出一个面积尽可能大的四边形 部件,使 , 米, ,经研究,只有当点 、 、 分别在边 、 、 上,且 ,并满足点 在矩形 内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形 部件?若能,求出裁得的四边形 部件的面积;若不能,请说明理由.
问题提出
(1)如图①,在 中, , 为 上一点, ,则 面积的最大值是 .
问题探究
(2)如图②,已知矩形 的周长为12,求矩形 面积的最大值.
问题解决
(3)如图③, 是葛叔叔家的菜地示意图,其中 米, 米, 米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形 ,且满足 .你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.
某校拟建一个面积为 的矩形健身区,张老师请同学们小组合作设计出使周长最小的建造方案,下面是其中一个小组的探究过程,请补充完整
(1)列式
设矩形的一边长是 ,则另一边长是 ,若周长为 ,则 与 之间的函数关系式为
(2)画图
①列表
|
|
4 |
6 |
10 |
13 |
16 |
20 |
25 |
30 |
|
|
|
58 |
|
40 |
|
|
|
58 |
|
|
表中
②描点:如图所示;
③连线:请在图中画出该函数的图象.
(3)发现
图象最低点的坐标为 ,即当 时,周长 有最小值 ;
(4)验证
在张老师的指导下,同学们将 与 之间的函数关系式进行配方,得出 .
.
当 时, 有最小值;
此方程可化为 ;
当 时,周长 有最小值 .
如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动.当点不与点、重合时,过点作于点,连结,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为秒.
(1)①的长为 ;
②的长用含的代数式表示为 .
(2)当为矩形时,求的值;
(3)当与重叠部分图形为四边形时,求与之间的函数关系式;
(4)当过点且平行于的直线经过一边中点时,直接写出的值.