问题提出
(1)如图①,在 ΔABC 中, BC = 6 , D 为 BC 上一点, AD = 4 ,则 ΔABC 面积的最大值是 .
问题探究
(2)如图②,已知矩形 ABCD 的周长为12,求矩形 ABCD 面积的最大值.
问题解决
(3)如图③, ΔABC 是葛叔叔家的菜地示意图,其中 AB = 30 米, BC = 40 米, AC = 50 米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形 ABCD ,且满足 ∠ ADC = 60 ° .你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.
如图1,已知直线的解析式为,它与轴、y轴分别相交于A、B两点.点C从点O出发沿OA以每秒1个单位的速度向点A匀速运动;点D从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,点C、D同时出发,当点C到达点A时同时停止运动.伴随着C、D的运动,EF始终保持垂直平分CD,垂足为E,且EF交折线AB-BO-AO于点F.(1)直接写出A、B两点的坐标;(2) 设点C、D的运动时间是t秒(t>0).①用含t的代数式分别表示线段AD和AC的长度;②在点F运动的过程中,四边形BDEF能否成为直角梯形?若能求t的值;若不能,请说明理由.(可利用备用图解题)
如图,平面直角坐标系中,矩形的顶点在原点,点在轴的正半轴上,点在轴的正半轴上.已知,,是的中点,是的中点.(1)分别写出点、点的坐标;(2)过点作交轴于点,求点的坐标;(3)在线段上是否存在点,使得以点、、为顶点的三角形是等腰三角形,若存在,求出点的坐标;若不存在,请说明理由.
如图,等腰△中,,是上一点,且.(1)试说明:△∽△;(2)若,,求的长;(3)若,求的度数.
两年前某种药品每吨的生产成本是5000元,随着生产技术的进步,现在生产这种药品的成本是每吨3000元,假设这两年成本的平均下降北一样,那么该药品成本的年平均下降率是多少?(精确到0.1%)
在一个箱子中放有三张完全相同的卡片,卡片上分别标有数字1,2,3.从箱子中任意取出一张卡片,用卡片上的数字作为十位数字,然后放回,再取出一张卡片,用卡片上的数字作为个位数字,这样组成一个两位数,请用列表法或画树状图的方法完成下列问题.(1)按这种方法能组成哪些两位数?(2)组成的两位数是3的倍数的概率是多少?