问题提出
(1)如图①,在 ΔABC 中, BC = 6 , D 为 BC 上一点, AD = 4 ,则 ΔABC 面积的最大值是 .
问题探究
(2)如图②,已知矩形 ABCD 的周长为12,求矩形 ABCD 面积的最大值.
问题解决
(3)如图③, ΔABC 是葛叔叔家的菜地示意图,其中 AB = 30 米, BC = 40 米, AC = 50 米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形 ABCD ,且满足 ∠ ADC = 60 ° .你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.
已知等边△ABC和⊙M. (1)如图l,若⊙M与BA的延长线AK及边AC均相切,求证: AM∥BC; (2)如图2,若⊙M与BA的延长线AK、BC的延长线CF及边AC均相切,求证:四边形ABCM是平行四边形.
将一根长为16厘米的细铁丝剪成两段.并把每段铁丝围成圆,设所得两圆半径分别为和. (1)求与的关系式,并写出的取值范围; (2)将两圆的面积和S表示成的函数关系式,求S的最小值.
若一次数和反比例函数的图象都经过点C(1,1). (1)求一次函数的表达式; (2)已知点A在第三象限,且同时在两个函数图象上,求点A的坐标.
如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°. (1)求∠ACB的大小; (2)求点A到直线BC的距离.
若方程的两实根为、,求的值.