如图, 是 的内接三角形,点 在 上,点 在弦 上 不与 重合),且四边形 为菱形.
(1)求证: ;
(2)求证: ;
(3)已知 的半径为3.
①若 ,求 的长;
②当 为何值时, 的值最大?
小敏思考解决如下问题:
原题:如图1,点 , 分别在菱形 的边 , 上, ,求证: .
(1)小敏进行探索,若将点 , 的位置特殊化;把 绕点 旋转得到 ,使 ,点 , 分别在边 , 上,如图2.此时她证明了 ,请你证明.
(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作 , ,垂足分别为 , .请你继续完成原题的证明.
(3)如果在原题中添加条件: , ,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
如图,在菱形 中, , 是锐角, 于点 , 是 的中点,连接 , .若 ,则 的值为 .
如图,在菱形纸片 中, , ,将菱形纸片翻折,使点 落在 的中点 处,折痕为 ,点 , 分别在边 , 上,则 的值为 .
如图,在射线 , , , 围成的菱形 中, , , 是射线 上一点, 与 , 都相切,与 的延长线交于点 .过 作 交线段 (或射线 于点 ,交线段 (或射线 于点 .以 为边作矩形 ,点 , 分别在围成菱形的另外两条射线上.
(1)求证: .
(2)设 ,当矩形 的面积为 时,求 的半径.
(3)当 或 与 相切时,求出所有满足条件的 的长.
如图,把一个菱形绕着它的对角线的交点旋转 ,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为 ,边长为2,则该“星形”的面积是 .
如图,在平面直角坐标系中, 为坐标原点,点 的坐标为 ,菱形 的顶点 , 都在第一象限, ,将菱形绕点 按顺时针方向旋转角 得到菱形 (点 的对应点为点 , 与 交于点 ,连接 .
(1)求点 的坐标.
(2)当 时,求 的长.
(3)求证: 平分 .
(4)连接 并延长交 轴于点 ,当点 的坐标为 时,求点 的坐标.
如图,在菱形 中,过点 作 , ,垂足分别为点 , ,延长 至 ,使得 ,连接 , ,若 ,则 .
如图,在菱形 中,过点 作 , ,垂足分别为点 , ,延长 至 ,使得 ,连接 , ,若 ,则 .
在菱形 中, ,在同一平面内,以对角线 为底边作顶角为 的等腰三角形 ,则 的度数为 .
如图,菱形 的一边 在 轴的负半轴上, 是坐标原点, 点坐标为 ,对角线 和 相交于点 且 .若反比例函数 的图象经过点 ,并与 的延长线交于点 ,则 .
如图,已知 的半径是2,点 、 、 在 上,若四边形 为菱形,则图中阴影部分面积为
A. B. C. D.