如图,已知直线,、之间的距离为8,点到直线的距离为6,点到直线的距离为4,,在直线上有一动点,直线上有一动点,满足,且最小,此时 .
如图,在 中, ,以 为直径的圆交 于点 ,交 于点 ,延长 至点 ,使 ,连接 , .
(1)求证:四边形 是菱形;
(2)若 , ,求半圆和菱形 的面积.
如图,在 中, , , ,点 、 分别是 、 的中点, 交 的延长线于 .则四边形 的面积为 .
如图,反比例函数 过点 ,直线 与 轴交于点 ,过点 作 轴的垂线 交反比例函数图象于点 .
(1)求 的值与 点的坐标;
(2)在平面内有点 ,使得以 , , , 四点为顶点的四边形为平行四边形,试写出符合条件的所有 点的坐标.
如图,六边形 的内角都相等, , ,则下列结论成立的个数是
① ;② ;③ ;④四边形 是平行四边形;⑤六边形 既是中心对称图形,又是轴对称图形.
A.2B.3C.4D.5
如图,在平面直角坐标系中,四边形 的边 在 轴上,点 在 轴的负半轴上,直线 ,且 , ,将经过 、 两点的直线 向右平移,平移后的直线与 轴交于点 ,与直线 交于点 ,设 的长为 .
(1)四边形 的面积为 ;
(2)设四边形 被直线 扫过的面积(阴影部分)为 ,请直接写出 关于 的函数解析式;
(3)当 时,直线 上有一动点 ,作 直线 于点 ,交 轴于点 ,将 沿直线 折叠得到 ,探究:是否存在点 ,使点 恰好落在坐标轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,四边形 的边 在 轴上,点 在 轴的负半轴上,直线 ,且 , ,将经过 、 两点的直线 向右平移,平移后的直线与 轴交于点 ,与直线 交于点 ,设 的长为 .
(1)四边形 的面积为 ;
(2)设四边形 被直线 扫过的面积(阴影部分)为 ,请直接写出 关于 的函数解析式;
(3)当 时,直线 上有一动点 ,作 直线 于点 ,交 轴于点 ,将 沿直线 折叠得到 ,探究:是否存在点 ,使点 恰好落在坐标轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
如图,已知凸五边形 的边长均相等,且 , ,则 必定满足
A. B.
C. D.以上情况均有可能
如图,四边形 中, ,点 、 分别在 、 上, ,过点 、 分别作 的垂线,垂足为 、 .
(1)求证: ;
(2)连接 ,线段 与 是否互相平分?请说明理由.