如图,在平行四边形 中,对角线 、 相交于点 , ,点 、点 分别是 、 的中点,连接 , , 于点 , 交 于点 , ,则线段 的长为 .
如图,平行四边形纸片 的边 , 的长分别是 和 ,将其四个角向内对折后,点 与点 重合于点 ,点 与点 重合于点 .四条折痕围成一个“信封四边形” ,其顶点分别在平行四边形 的四条边上,则 .
如图,平行四边形 中,对角线 、 相交于点 ,且 , , 是对角线 上任意一点,过点 作 ,与平行四边形的两条边分别交于点 、 .设 , ,则能大致表示 与 之间关系的图象为
A.
B.
C.
D.
平行四边形 中, 、 是两条对角线,现从以下四个关系① ;② ;③ ;④ 中随机取出一个作为条件,即可推出平行四边形 是菱形的概率为
A. B. C. D.1
如图,抛物线 与 轴交于 , 两点,与 轴交于点 ,顶点为 ,以 为直径作 .下列结论:①抛物线的对称轴是直线 ;② 的面积为 ;③抛物线上存在点 ,使四边形 为平行四边形;④直线 与 相切.其中正确结论的个数是
A.1B.2C.3D.4
如图,在 中, , ,垂足分别为 , ,且 .
(1)求证: 是菱形;
(2)若 , ,求 的面积.
平行四边形 中, , , 的中垂线分别交 , 于点 , ,垂足为 .
(1)求证: ;
(2)若 ,求 的值.
如图,在平行四边形 中, 为 边上的中点,连接 并延长,交 的延长线于点 .
(1)求证: ;
(2)若平行四边形 的面积为32,试求四边形 的面积.
如图,在平行四边形 中,点 在边 上, ,连接 交 于点 ,则 的面积与 的面积之比为
A. B. C. D.
如图,在 中, 是 的中点,连接 并延长交 的延长线于点 .
(1)求证: ;
(2)连接 ,若 ,求证: .
如图,在 中,将 沿 折叠后,点 恰好落在 的延长线上的点 处.若 , ,则 的周长为
A. |
12 |
B. |
15 |
C. |
18 |
D. |
21 |
已知,如图1,在 中,点 是 中点,连接 并延长,交 的延长线于点 .
(1)求证: ;
(2)如图2,点 是边 上任意一点(点 不与点 、 重合),连接 交 于点 ,连接 ,过点 作 ,交 于点 .
①求证: ;
②当点 是边 中点时,恰有 为正整数),求 的值.
如图,在平面直角坐标系中,点 的坐标是 ,点 的坐标是 ,点 、 在以 为直径的半圆 上,且四边形 是平行四边形,则点 的坐标为 .