如图,在平行四边形 中,点 、 、 的坐标分别是 、 、 ,双曲线 过点 .
(1)求双曲线的解析式;
(2)作直线 交 轴于点 ,连接 ,求 的面积.
如图,四边形 是平行四边形,延长 至 ,延长 至 ,使得 ,连接 交 于 ,交 于 .求证: .
如图, 的对角线 、 交于点 , 过点 且与 、 分别交于点 、 .试猜想线段 、 的关系,并说明理由.
如图,在 中,已知 .
(1)实践与操作:作 的平分线交 于点 ,在 上截取 ,连接 ;(要求:尺规作图,保留作图痕迹,不写作法)
(2)猜想并证明:猜想四边形 的形状,并给予证明.
平行四边形ABCD的两个顶点A、C在反比例函数 图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点
(1)已知点A的坐标是(2,3),求k的值及C点的坐标;
(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.
如图,AC是▱ABCD的对角线, .
(1)求证: ;
(2)若 , ,求▱ABCD的面积.
如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
(1)求证: ;
(2)连接BF,若 , , 求平行四边形ABCD的面积.
已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BD作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证 (不需证明)
(2)直线BP绕点B逆时针方向旋转,当 时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BD作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证 (不需证明)
(2)直线BP绕点B逆时针方向旋转,当 时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
在△ABC中, ,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.
(1)求∠D的度数;
(2)若两三角形重叠部分的形状始终是四边形AGDH.
①如图1,连接GH、AD,当 时,请判断四边形AGDH的形状,并证明;
②当AGDH的面积最大时,过A作 于P,且 ,求k的值.
已知: AC是▱ ABCD的对角线.
(1)用直尺和圆规作出线段 AC的垂直平分线,与 AD相交于点 E,连接 CE.(保留作图痕迹,不写作法);
(2)在(1)的条件下,若 AB=3, BC=5,求△ DCE的周长.