在△ABC中, AB = 6 , AC = 8 , BC = 10 ,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.
(1)求∠D的度数;
(2)若两三角形重叠部分的形状始终是四边形AGDH.
①如图1,连接GH、AD,当 GH ⊥ AD 时,请判断四边形AGDH的形状,并证明;
②当AGDH的面积最大时,过A作 AP ⊥ EF 于P,且 AP = AD ,求k的值.
面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的13%给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?设购买电视机台,依题意填充下列表格:
列出方程(组)并解答
已知,其中与成正比例,与成反比例,并且当时,;当时,,求与的函数关系式
已知一次函数的图象经过点(2,7)求的值;判断点(-2,1)是否在所给函数图象上。
解分式方程:
如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D. (1)填空:PD的长为(用含t的代数式表示); (2)求点C的坐标(用含t的代数式表示); (3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t的值.若不能,请说明理由; (4)填空:在点P从O向A运动的过程中,点C运动路线的长为