(每小题5分,共10分)如图,在Rt△ABC中,∠ABC=90°将Rt△ABC绕点C顺时针方向旋转60°得到△DEC点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF连接AD. (1)求证:四边形AFCD是菱形;(2)连接BE并延长交AD于G连接CG,请问:四边形ABCG是什么特殊平行四边形?为什么?
先化简,再求值: ( y x - y - y 2 x 2 - y 2 ) ÷ x xy + y 2 ,其中 x = 3 + 1 , y = 3 - 1 .
如图,抛物线 y = a x 2 + bx + 8 ( a ≠ 0 ) 与 x 轴交于点 A ( - 2 , 0 ) 和点 B ( 8 , 0 ) ,与 y 轴交于点 C ,顶点为 D ,连接 AC , BC , BC 与抛物线的对称轴 l 交于点 E .
(1)求抛物线的表达式;
(2)点 P 是第一象限内抛物线上的动点,连接 PB , PC ,当 S ΔPBC = 3 5 S ΔABC 时,求点 P 的坐标;
(3)点 N 是对称轴 l 右侧抛物线上的动点,在射线 ED 上是否存在点 M ,使得以点 M , N , E 为顶点的三角形与 ΔOBC 相似?若存在,求点 M 的坐标;若不存在,请说明理由.
如图1,在 ΔABC 中, ∠ A = 90 ° , AB = AC = 2 + 1 ,点 D , E 分别在边 AB , AC 上,且 AD = AE = 1 ,连接 DE .现将 ΔADE 绕点 A 顺时针方向旋转,旋转角为 α ( 0 ° < α < 360 ° ) ,如图2,连接 CE , BD , CD .
(1)当 0 ° < α < 180 ° 时,求证: CE = BD ;
(2)如图3,当 α = 90 ° 时,延长 CE 交 BD 于点 F ,求证: CF 垂直平分 BD ;
(3)在旋转过程中,求 ΔBCD 的面积的最大值,并写出此时旋转角 α 的度数.
因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量 y (桶 ) 与销售单价 x (元 ) 之间满足一次函数关系,其图象如图所示.
(1)求 y 与 x 之间的函数表达式;
(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润 = 销售价 - 进价)
如图, AB 为 ⊙ O 的直径,射线 AD 交 ⊙ O 于点 F ,点 C 为劣弧 BF ̂ 的中点,过点 C 作 CE ⊥ AD ,垂足为 E ,连接 AC .
(1)求证: CE 是 ⊙ O 的切线;
(2)若 ∠ BAC = 30 ° , AB = 4 ,求阴影部分的面积.