初中数学

如图,在 Rt Δ ABC 中, ACB = 90 ° ,以该三角形的三条边为边向形外作正方形,正方形的顶点 E F G H M N 都在同一个圆上.记该圆面积为 S 1 ΔABC 面积为 S 2 ,则 S 1 S 2 的值是 (    )

A.

5 π 2

B.

3 π

C.

5 π

D.

11 π 2

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 5 AD = 3 ,点 E BC 上一点,把 ΔCDE 沿 DE 翻折,点 C 恰好落在 AB 边上的 F 处,则 CE 的长是 (    )

A.

1

B.

4 3

C.

3 2

D.

5 3

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, A = 60 ° ,点 E F 分别在边 AB BC 上, AE = BF = 2 ΔDEF 的周长为 3 6 ,则 AD 的长为 (    )

A.

6

B.

2 3

C.

3 + 1

D.

2 3 - 1

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, ACB = 90 ° AC = 8 BC = 6 ,将 ΔADE 沿 DE 翻折,使点 A 与点 B 重合,则 CE 的长为 (    )

A.

19 8

B.

2

C.

25 4

D.

7 4

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

《九章算术》中一道"引葭赴岸"问题:"今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?"题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇 AC 生长在它的中央,高出水面部分 BC 为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部 C 恰好碰到岸边的 C ' 处(如图),水深和芦苇长各多少尺?则该问题的水深是   尺.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AB = 10 BC = 8 ,按下列步骤作图:

image.png

步骤1:以点 A 为圆心,小于 AC 的长为半径作弧分别交 AC AB 于点 D E

步骤2:分别以点 D E 为圆心,大于 1 2 DE 的长为半径作弧,两弧交于点 M

步骤3:作射线 AM BC 于点 F .则 AF 的长为 (    )

A.

6

B.

3 5

C.

4 3

D.

6 2

来源:2021年贵州省铜仁市中考数学试卷
  • 更新:2021-07-31
  • 题型:未知
  • 难度:未知

如图,沿 AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从 AC 上的一点 B ABD = 120 ° BD = 520 m D = 30 ° .那么另一边开挖点 E D 多远正好使 A C E 三点在一直线上 ( 3 取1.732,结果取整数)?

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形 ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点 E F G H 都是格点,且四边形 EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形 ABCD 的边长为 65 ,此时正方形 EFGH 的面积为5.问:当格点弦图中的正方形 ABCD 的边长为 65 时,正方形 EFGH 的面积的所有可能值是  (不包括 5 )

来源:2018年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为 (    )

A.0.7米B.1.5米C.2.2米D.2.4米

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是   cm

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,数轴上点 A B 分别对应1,2,过点 B PQ AB ,以点 B 为圆心, AB 长为半径画弧,交 PQ 于点 C ,以原点 O 为圆心, OC 长为半径画弧,交数轴于点 M ,则点 M 对应的数是 (    )

A. 3 B. 5 C. 6 D. 7

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为 a ,较短直角边长为 b .若 ab = 8 ,大正方形的面积为25,则小正方形的边长为 (    )

A.9B.6C.4D.3

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,数轴上点 A 对应的数为2, AB OA A ,且 AB = 1 ,以 O 为圆心, OB 长为半径作弧,交数轴于点 C ,则 OC 长为 (    )

A.3B. 2 C. 3 D. 5

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图是一块圆环形玉片的残片,作外圆的弦 AB 与内圆相切于点 C ,量得 AB = 8 cm 、点 C AB ̂ 的中点 D 的距离 CD = 2 cm .则此圆环形玉片的外圆半径为   cm

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知 CD ΔABC 的边 AB 上的高,若 CD = 3 AD = 1 AB = 2 AC ,则 BC 的长为              

来源:2018年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学勾股定理的应用试题