如图,在边长为1个单位长度的小正方形组成的网格中,的三个顶点均在格点上,将绕点按顺时针方向旋转,点的对应点为点,连接,则线段 .
如图,在每个小正方形的边长为1的网格中,的顶点在格点上,是小正方形边的中点,,,经过点,的圆的圆心在边上.
(Ⅰ)线段的长等于 ;
(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点,使其满足,并简要说明点的位置是如何找到的(不要求证明) .
如图,正方形纸片的边长为12,是边上一点,连接、折叠该纸片,使点落在上的点,并使折痕经过点,得到折痕,点在上,若,则的长为 .
如图,在每个小正方形的边长为1的网格中,点,,均在格点上.
(1)的长等于 ;
(2)在的内部有一点,满足,请在如图所示的网格中,用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明) .
如图,在每个小正方形的边长为1的网格中, , 为格点, , 为小正方形边的中点, 为 , 的延长线的交点.
(Ⅰ) 的长等于 ;
(Ⅱ)若点 在线段 上,点 在线段 上,且满足 ,请在如图所示的网格中,用无刻度的直尺,画出线段 ,并简要说明点 , 的位置是如何找到的(不要求证明) .
如图,在中,,,,点是的中点,以为直径作,分别与,交于点,,过点作的切线,交于点,则的长为 .
已知任一平面封闭图形,现在其外部存在一水平放置的矩形,使得矩形每条边都与该图形有至少一个交点,且构成该图形的所有点都在矩形内部或矩形边上,那么就称这个矩形为“该图形的矩形”,且这个矩形的水平长成为该图形的宽,铅直高称为该图形的高.如图,边长为1的菱形的一条边水平放置,已知“该菱形的矩形”的“高”是“宽”的,则该“菱形的矩形”的“宽”为 .
如图,已知,,,.分别以点、为圆心画圆.如果点在内,点在外,且与内切,那么的半径长的取值范围是 .
我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜” 七.见方求邪,七之,五而一.”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为,依据《孙子算经》的方法,则它的对角线的长是 .