初中数学

如图,在 Rt Δ ABC 中, C = 90 ° B = 20 ° PQ 垂直平分 AB ,垂足为 Q ,交 BC 于点 P .按以下步骤作图:①以点 A 为圆心,以适当的长为半径作弧,分别交边 AC AB 于点 D E ;②分别以点 D E 为圆心,以大于 1 2 DE 的长为半径作弧,两弧相交于点 F ;③作射线 AF .若 AF PQ 的夹角为 α ,则 α =     

来源:2020年山东省潍坊市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC E F 分别是 BC AC 的中点,以 AC 为斜边作 Rt Δ ADC ,若 CAD = CAB = 45 ° ,则下列结论不正确的是 (    )

A. ECD = 112 . 5 ° B. DE 平分 FDC C. DEC = 30 ° D. AB = 2 CD

来源:2017年辽宁省营口市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC ACB = 90 ° ,点 D E 分别在 AC BC 上,且 CD = CE

(1)如图1,求证: CAE = CBD

(2)如图2, F BD 的中点,求证: AE CF

(3)如图3, F G 分别是 BD AE 的中点,若 AC = 2 2 CE = 1 ,求 ΔCGF 的面积.

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O E BC 上一点, CE = 5 F DE 的中点.若 ΔCEF 的周长为18,则 OF 的长为          

来源:2016年山东省青岛市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° AB = 5 BC = 2 ,以点 A 为圆心, AC 的长为半径画弧,交 AB 于点 D ,交 AC 于点 C ,以点 B 为圆心, AC 的长为半径画弧,交 AB 于点 E ,交 BC 于点 F ,则图中阴影部分的面积为 (    )

A. 8 π B. 4 π C. 2 π 4 D. 1 π 4

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图 Rt Δ ABC 中, CD 是斜边 AB 上的中线,已知 CD = 2 AC = 3 ,则 cos A =         

来源:2016年江苏省南通市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形 ABCD 是矩形, E BA 延长线上一点, F CE 上一点, ACF = AFC FAE = FEA .若 ACB = 21 ° ,则 ECD 的度数是 (    )

A. 7 ° B. 21 ° C. 23 ° D. 24 °

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,把三角形纸片折叠,使点 A 、点 C 都与点 B 重合,折痕分别为 EF DG ,得到 BDE = 60 ° BED = 90 ° ,若 DE = 2 ,则 FG 的长为  

来源:2019年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AB = 2 C = 30 ° ,将 Rt Δ ABC 绕点 A 旋转得到 Rt AB ' C ' ,使点 B 的对应点 B ' 落在 AC 上,在 B ' C ' 上取点 D ,使 B ' D = 2 ,那么点 D BC 的距离等于 (    )

A. 2 ( 3 3 + 1 ) B. 3 3 + 1 C. 3 - 1 D. 3 + 1

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点 A 的斜平移,如点 P ( 2 , 3 ) 经1次斜平移后的点的坐标为 ( 3 , 5 ) ,已知点 A 的坐标为 ( 1 , 0 )

(1)分别写出点 A 经1次,2次斜平移后得到的点的坐标.

(2)如图,点 M 是直线 l 上的一点,点 A 关于点 M 的对称点为点 B ,点 B 关于直线 l 的对称点为点 C

①若 A B C 三点不在同一条直线上,判断 ΔABC 是否是直角三角形?请说明理由.

②若点 B 由点 A n 次斜平移后得到,且点 C 的坐标为 ( 7 , 6 ) ,求出点 B 的坐标及 n 的值.

来源:2016年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AB > AD

(1)用尺规完成以下基本作图:在 AB上截取 AE,使得 AE= AD;作∠ BCD的平分线交 AB于点 F.(保留作图痕迹,不写作法)

(2)在(1)所作的图形中,连接 DECF于点 P,猜想△ CDP按角分类的类型,并证明你的结论.

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知在平面直角坐标系 xOy 中,点 A 的坐标为 ( 3 , 4 ) M 是抛物线 y = a x 2 + bx + 2 ( a 0 ) 对称轴上的一个动点.小明经探究发现:当 b a 的值确定时,抛物线的对称轴上能使 ΔAOM 为直角三角形的点 M 的个数也随之确定,若抛物线 y = a x 2 + bx + 2 ( a 0 ) 的对称轴上存在3个不同的点 M ,使 ΔAOM 为直角三角形,则 b a 的值是   

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,根据尺规作图的痕迹,判断以下结论错误的是 (    )

A.

BDE = BAC

B.

BAD = B

C.

DE = DC

D.

AE = AC

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, OB = 2 3 A = 30 ° O 的半径为1,点 P AB 边上的动点,过点 P O 的一条切线 PQ (其中点 Q 为切点),则线段 PQ 长度的最小值为   

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知:如图,在 ΔABC 中, AB = AC ,点 P 是底边 BC 上一点且满足 PA = PB O ΔPAB 的外接圆,过点 P PD / / AB AC 于点 D

(1)求证: PD O 的切线;

(2)若 BC = 8 tan ABC = 2 2 ,求 O 的半径.

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学直角三角形的性质试题