如图, 中, , ,点 , 分别在 , 上, ,点 为 的延长线与 的延长线的交点.
(1)求证: ;
(2)判断 和 的数量关系,并说明理由;
(3)若 , ,求 的长.
如图, 的周长为19,点 , 在边 上, 的平分线垂直于 ,垂足为 , 的平分线垂直于 ,垂足为 ,若 ,则 的长度为
A. B.2C. D.3
经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段 是 的“和谐分割线”, 为等腰三角形, 和 相似, ,则 的度数为 .
如图,在Rt△ ABC中,∠ ACB=90°, CD⊥ AB,垂足为 D, AF平分∠ CAB,交 CD于点 E,交 CB于点 F.若 AC=3, AB=5,则 CE的长为( )
A. |
|
B. |
|
C. |
|
D. |
|
阅读下面的例题及点拨,并解决问题:
例题:如图①,在等边 中, 是 边上一点(不含端点 , , 是 的外角 的平分线上一点,且 .求证: .
点拨:如图②,作 , 与 的延长线相交于点 ,得等边 ,连接 .易证: ,可得 , ;又 ,则 ,可得 ;由 ,进一步可得 ,又因为 ,所以 ,即: .
问题:如图③,在正方形 中, 是 边上一点(不含端点 , , 是正方形 的外角 的平分线上一点,且 .求证: .
(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在 中,点 在线段 上, , , , ,求 的长.
经过社团成员讨论发现,过点 作 ,交 的延长线于点 ,通过构造 就可以解决问题(如图 .
请回答: , .
(2)请参考以上解决思路,解决问题:
如图3,在四边形 中,对角线 与 相交于点 , , , , ,求 的长.
中, , , ,过点 的直线把 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 .
(1)【操作发现】
如图1,在边长为1个单位长度的小正方形组成的网格中, 的三个顶点均在格点上.
①请按要求画图:将 绕点 顺时针方向旋转 ,点 的对应点为点 ,点 的对应点为点 .连接 ;
②在①中所画图形中, .
(2)【问题解决】
如图2,在 中, , ,延长 到 ,使 ,将斜边 绕点 顺时针旋转 到 ,连接 ,求 的度数.
(3)【拓展延伸】
如图3,在四边形 中, ,垂足为 , , , , 为常数),求 的长(用含 的式子表示).
如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为( )
A.150°B.130°C.120°D.100°
如图,在四边形 ABCD中,∠ B=∠ C=90°, AB> CD, AD= AB+ CD.
(1)利用尺规作∠ ADC的平分线 DE,交 BC于点 E,连接 AE(保留作图痕迹,不写作法);
(2)在(1)的条件下,
①证明: AE⊥ DE;
②若 CD=2, AB=4,点 M, N分别是 AE, AB上的动点,求 BM+ MN的最小值.
如图,已知 , , 和 相交于点 .
(1)求证: ;
(2)判断 的形状,并说明理由.