小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, 与 恰好为对顶角, ,连接 , ,点 是线段 上一点.
探究发现:
(1)当点 为线段 的中点时,连接 (如图(2) ,小明经过探究,得到结论: .你认为此结论是否成立? .(填"是"或"否"
拓展延伸:
(2)将(1)中的条件与结论互换,即: ,则点 为线段 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若 , ,求 的长.
如图1,四边形 的对角线 , 相交于点 , , .
(1)过点 作 交 于点 ,求证: ;
(2)如图2,将 沿 翻折得到 .
①求证: ;
②若 ,求证: .
如图,在 中, ,以 为直径的 与 相交于点 ,过点 作 的切线交 于点 .
(1)求证: ;
(2)若 的半径为5, ,求 的长.
如图,已知 , , 和 相交于点 .
(1)求证: ;
(2)判断 的形状,并说明理由.
如图,在 中, , , 的平分线交 于点 ,交 的延长线于点 , 于点 ,若 ,则 的周长为
A.16B.17C.24D.25
在菱形 中, ,点 是射线 上一动点,以 为边向右侧作等边 ,点 的位置随着点 的位置变化而变化.
(1)如图1,当点 在菱形 内部或边上时,连接 , 与 的数量关系是 , 与 的位置关系是 ;
(2)当点 在菱形 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
(3)如图4,当点 在线段 的延长线上时,连接 ,若 , ,求四边形 的面积.
如图,在 中, ,以 为直径的 交 于点 ,切线 交 于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图1,在等腰三角形 中, , .如图2,在底边 上取一点 ,连接 ,使得 .如图3,将 沿着 所在直线折叠,使得点 落在点 处,连接 ,得到四边形 ,则 的长是
A.4B. C. D.
如图,在矩形 中, 是 边的中点,沿 对折矩形 ,使 点落在点 处,折痕为 ,连接 并延长 交 于 点,连接 并延长 交 于 点.给出以下结论:
①四边形 为平行四边形;
② ;
③ 为等腰三角形;
④ .
其中正确结论的个数为
A.1B.2C.3D.4
如图, 中, , ,点 , 分别在 , 上, ,点 为 的延长线与 的延长线的交点.
(1)求证: ;
(2)判断 和 的数量关系,并说明理由;
(3)若 , ,求 的长.
如图, 的周长为19,点 , 在边 上, 的平分线垂直于 ,垂足为 , 的平分线垂直于 ,垂足为 ,若 ,则 的长度为
A. B.2C. D.3
如图,在 中, 平分 交 于点 ,过点 作 交 于点 ,且 平分 ,若 ,则 的长为
A.4B.6C. D.8