综合与实践
问题情境:
如图①,点 为正方形 内一点, ,将 绕点 按顺时针方向旋转 ,得到 (点 的对应点为点 .延长 交 于点 ,连接 .
猜想证明:
(1)试判断四边形 的形状,并说明理由;
(2)如图②,若 ,请猜想线段 与 的数量关系并加以证明;
解决问题:
(3)如图①,若 , ,请直接写出 的长.
等腰三角形的一个内角为 ,则另外两个内角的度数分别是
A. , B. , 或 ,
C. , D. , 或 ,
如图, 、 、 、 是四根长度均为 的火柴棒,点 、 、 共线.若 , ,则线段 的长度是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , 于点 , 于点 ,以点 为圆心, 为半径作半圆,交 于点 .
(1)求证: 是 的切线;
(2)若点 是 的中点, ,求图中阴影部分的面积;
(3)在(2)的条件下,点 是 边上的动点,当 取最小值时,直接写出 的长.
如图,菱形 中, ,点 从点 出发,沿折线 方向移动,移动到点 停止.在 形状的变化过程中,依次出现的特殊三角形是
A. |
直角三角形 等边三角形 等腰三角形 直角三角形 |
B. |
直角三角形 等腰三角形 直角三角形 等边三角形 |
C. |
直角三角形 等边三角形 直角三角形 等腰三角形 |
D. |
等腰三角形 等边三角形 直角三角形 等腰三角形 |
若实数 、 满足等式 ,且 、 恰好是等腰 的两条边的边长,则 的周长是
A.12B.10C.8D.6
已知 , 是等腰三角形的两边长,且 , 满足 ,则此等腰三角形的周长为
A. |
8 |
B. |
6或8 |
C. |
7 |
D. |
7或8 |
问题:如图,在 中, .在 的延长线上取点 , ,作 ,使 .若 , ,求 的度数.
答案: .
思考:(1)如果把以上“问题”中的条件“ ”去掉,其余条件不变,那么 的度数会改变吗?说明理由.
(2)如果把以上“问题”中的条件“ ”去掉,再将“ ”改为“ ”,其余条件不变,求 的度数.
如图,等腰直角三角形 中, , ,将 绕点 顺时针旋转 ,得到 ,连结 ,过点 作 交 的延长线于点 ,连结 ,则 的度数
A.随着 的增大而增大B.随着 的增大而减小
C.不变D.随着 的增大,先增大后减小
已知:如图,在 中, , 与 相切于点 .求证: .小明同学的证明过程如下框:
证明:连结 , , , 又 , , . |
小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.
如图,在等腰 中, , ,按下列步骤作图:
①以点 为圆心,适当的长度为半径作弧,分别交 , 于点 , ,再分别以点 , 为圆心,大于 的长为半径作弧相交于点 ,作射线 ;
②分别以点 , 为圆心,大于 的长为半径作弧相交于点 , ,作直线 ,交射线 于点 ;
③以点 为圆心,线段 长为半径作圆.
则 的半径为
A. B.10C.4D.5
如图, 是半圆 的直径, , 是半圆 上不同于 , 的两点, , 与 相交于点 . 是半圆 所在圆的切线,与 的延长线相交于点 .
(1)求证: ;
(2)若 ,求证: 平分 .