初中数学

综合与实践

问题情境:

如图①,点 E 为正方形 ABCD 内一点, AEB = 90 ° ,将 Rt Δ ABE 绕点 B 按顺时针方向旋转 90 ° ,得到 ΔCBE ' (点 A 的对应点为点 C ) .延长 AE CE ' 于点 F ,连接 DE

猜想证明:

(1)试判断四边形 B E ' FE 的形状,并说明理由;

(2)如图②,若 DA = DE ,请猜想线段 CF F E ' 的数量关系并加以证明;

解决问题:

(3)如图①,若 AB = 15 CF = 3 ,请直接写出 DE 的长.

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

等腰三角形的一个内角为 70 ° ,则另外两个内角的度数分别是 (    )

A. 55 ° 55 ° B. 70 ° 40 ° 70 ° 55 °

C. 70 ° 40 ° D. 55 ° 55 ° 70 ° 40 °

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, AB BC CD DE 是四根长度均为 5 cm 的火柴棒,点 A C E 共线.若 AC = 6 cm CD BC ,则线段 CE 的长度是 (    )

A.

6 cm

B.

7 cm

C.

6 2 cm

D.

8 cm

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC AO BC 于点 O OE AB 于点 E ,以点 O 为圆心, OE 为半径作半圆,交 AO 于点 F

(1)求证: AC O 的切线;

(2)若点 F OA 的中点, OE = 3 ,求图中阴影部分的面积;

(3)在(2)的条件下,点 P BC 边上的动点,当 PE + PF 取最小值时,直接写出 BP 的长.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中, B = 60 ° ,点 P 从点 B 出发,沿折线 BC - CD 方向移动,移动到点 D 停止.在 ΔABP 形状的变化过程中,依次出现的特殊三角形是 (    )

A.

直角三角形 等边三角形 等腰三角形 直角三角形

B.

直角三角形 等腰三角形 直角三角形 等边三角形

C.

直角三角形 等边三角形 直角三角形 等腰三角形

D.

等腰三角形 等边三角形 直角三角形 等腰三角形

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, A = 70 ° DC = DB ,则 CDB =   

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

若实数 m n 满足等式 | m 2 | + n 4 = 0 ,且 m n 恰好是等腰 ΔABC 的两条边的边长,则 ΔABC 的周长是 (    )

A.12B.10C.8D.6

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

已知 a b 是等腰三角形的两边长,且 a b 满足 2 a 3 b + 5 + ( 2 a + 3 b 13 ) 2 = 0 ,则此等腰三角形的周长为 (    )

A.

8

B.

6或8

C.

7

D.

7或8

来源:2021年青海省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

问题:如图,在 ΔABD 中, BA = BD .在 BD 的延长线上取点 E C ,作 ΔAEC ,使 EA = EC .若 BAE = 90 ° B = 45 ° ,求 DAC 的度数.

答案: DAC = 45 °

思考:(1)如果把以上“问题”中的条件“ B = 45 ° ”去掉,其余条件不变,那么 DAC 的度数会改变吗?说明理由.

(2)如果把以上“问题”中的条件“ B = 45 ° ”去掉,再将“ BAE = 90 ° ”改为“ BAE = n ° ”,其余条件不变,求 DAC 的度数.

来源:2020年浙江省绍兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,等腰直角三角形 ABC 中, ABC = 90 ° BA = BC ,将 BC 绕点 B 顺时针旋转 θ ( 0 ° < θ < 90 ° ) ,得到 BP ,连结 CP ,过点 A AH CP CP 的延长线于点 H ,连结 AP ,则 PAH 的度数 (    )

A.随着 θ 的增大而增大B.随着 θ 的增大而减小

C.不变D.随着 θ 的增大,先增大后减小

来源:2020年浙江省绍兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知:如图,在 ΔOAB 中, OA = OB O AB 相切于点 C .求证: AC = BC .小明同学的证明过程如下框:

证明:连结 OC

OA = OB

A = B

OC = OC

ΔOAC ΔOBC

AC = BC

小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.

来源:2020年浙江省嘉兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在等腰 ΔABC 中, AB = AC = 2 5 BC = 8 ,按下列步骤作图:

①以点 A 为圆心,适当的长度为半径作弧,分别交 AB AC 于点 E F ,再分别以点 E F 为圆心,大于 1 2 EF 的长为半径作弧相交于点 H ,作射线 AH

②分别以点 A B 为圆心,大于 1 2 AB 的长为半径作弧相交于点 M N ,作直线 MN ,交射线 AH 于点 O

③以点 O 为圆心,线段 OA 长为半径作圆.

O 的半径为 (    )

A. 2 5 B.10C.4D.5

来源:2020年浙江省嘉兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB 是半圆 O 的直径, C D 是半圆 O 上不同于 A B 的两点, AD = BC AC BD 相交于点 F BE 是半圆 O 所在圆的切线,与 AC 的延长线相交于点 E

(1)求证: ΔCBA ΔDAB

(2)若 BE = BF ,求证: AC 平分 DAB

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC = 2 P BC 上任意一点, PE AB 于点 E PF AC 于点 F ,若 S ΔABC = 1 ,则 PE + PF =   

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图, AD 是等腰三角形 ABC 的顶角平分线, BD = 5 ,则 CD 等于 (    )

A.10B.5C.4D.3

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的性质试题