如图, 中, , 的平分线交 于 , 交 的延长线于点 , 交 于点 .
(1)若 ,求 的度数;
(2)若 ,求 的长.
如图, 是 的直径,点 是 上一点, 的平分线 交 于点 ,过点 作 交 的延长线于点 .
(1)求证: 是 的切线;
(2)过点 作 于点 ,连接 .若 , ,求 的长度.
已知 、 、4分别是等腰三角形(非等边三角形)三边的长,且 、 是关于 的一元二次方程 的两个根,则 的值等于
A. |
7 |
B. |
7或6 |
C. |
6或 |
D. |
6 |
在等腰中,,点,在射线上,,过点作,交射线于点.请答案下列问题:
(1)当点在线段上,是的角平分线时,如图①,求证:;(提示:延长,交于点.
(2)当点在线段的延长线上,是的角平分线时,如图②;当点在线段的延长线上,是的外角平分线时,如图③,请直接写出线段,,之间的数量关系,不需要证明;
(3)在(1)、(2)的条件下,若,则 .
如图,是的直径,点在直径上与,不重合),,且,连接,与交于点,在上取一点,使.
(1)求证:是的切线;
(2)若是的中点,,求的长.
性质探究
如图(1),在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图(2),在四边形中,,在边,上分别取中点,,连接.若,,求线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 .(用含的式子表示)
如图,在中,,平分交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交、于点、.
(1)试判断直线与的位置关系,并说明理由;
(2)若,,求阴影部分的面积(结果保留.
如图,是的外接圆,其切线与直径的延长线相交于点,且.
(1)求的度数;
(2)若,求的半径.
如图,在中,是边上一点,且.
(1)尺规作图(保留作图痕迹,不写作法)
①作的角平分线交于点;
②作线段的垂直平分线交于点.
(2)连接,直接写出线段和的数量关系及位置关系.