初中数学

如图, ΔABC 中, AB = AC DE 垂直平分 AB ,交线段 BC 于点 E (点 E 与点 C 不重合),点 F AC 上一点,点 G AB 上一点(点 G 与点 A 不重合),且 GEF + BAC = 180 °

(1)如图1,当 B = 45 ° 时,线段 AG CF 的数量关系是  

(2)如图2,当 B = 30 ° 时,猜想线段 AG CF 的数量关系,并加以证明.

(3)若 AB = 6 DG = 1 cos B = 3 4 ,请直接写出 CF 的长.

来源:2019年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 40 ° ,点 D E 分别在边 AB AC 上, BD = BC = CE ,连结 CD BE

(1)若 ABC = 80 ° ,求 BDC ABE 的度数;

(2)写出 BEC BDC 之间的关系,并说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在 ΔABC 中, AO BC 边上的中线, AB AC 的“极化值”就等于 A O 2 - B O 2 的值,可记为 AB AC = A O 2 - B O 2

(1)在图1中,若 BAC = 90 ° AB = 8 AC = 6 AO BC 边上的中线,则 AB AC =          OC OA =        

(2)如图2,在 ΔABC 中, AB = AC = 4 BAC = 120 ° ,求 AB AC BA BC 的值;

(3)如图3,在 ΔABC 中, AB = AC AO BC 边上的中线,点 N AO 上,且 ON = 1 3 AO .已知 AB AC = 14 BN BA = 10 ,求 ΔABC 的面积.

来源:2017年江苏省扬州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,等腰 ΔABC 的底边 BC = 20 ,面积为120,点 F 在边 BC 上,且 BF = 3 FC EG 是腰 AC 的垂直平分线,若点 D EG 上运动,则 ΔCDF 周长的最小值为  

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 E 在边 BC 上移动(点 E 不与点 B C 重合),满足 DEF = B ,且点 D F 分别在边 AB AC 上.

(1)求证: ΔBDE ΔCEF

(2)当点 E 移动到 BC 的中点时,求证: FE 平分 DFC

来源:2017年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知:如图,在 ΔOAB 中, OA = OB O AB 相切于点 C .求证: AC = BC .小明同学的证明过程如下框:

证明:连结 OC

OA = OB

A = B

OC = OC

ΔOAC ΔOBC

AC = BC

小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.

来源:2020年浙江省嘉兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知等腰三角形 ABC 中, AB = AC ,点 D E 分别在边 AB AC 上,且 AD = AE ,连接 BE CD ,交于点 F

(1)判断 ABE ACD 的数量关系,并说明理由;

(2)求证:过点 A F 的直线垂直平分线段 BC

来源:2017年江苏省连云港市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, P BA 延长线上一点, PC O 于点 C CG O 的弦, CG AB ,垂足为 D

(1)求证: PCA = ABC

(2)过点 A AE / / PC O 于点 E ,交 CD 于点 F ,连接 BE ,若 cos P = 4 5 CF = 10 ,求 BE 的长.

来源:2018年四川省广安市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为平行四边形,连接 AC ,且 AC = 2 AB .请用尺规完成基本作图:作出 BAC 的角平分线与 BC 交于点 E .连接 BD AE 于点 F ,交 AC 于点 O ,猜想线段 BF 和线段 DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC < BC .分别以点 A B 为圆心,大于 1 2 AB 的长为半径画弧,两弧交于 D E 两点,直线 DE BC 于点 F ,连接 AF .以点 A 为圆心, AF 为半径画弧,交 BC 延长线于点 H ,连接 AH .若 BC = 3 ,则 ΔAFH 的周长为   

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在正五边形 ABCDE 中,连结 AC BD 交于点 F ,则 AFB 的度数为   

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ΔDBC ΔABC 关于直线 BC 对称,连接 AD ,与 BC 相交于点 O ,过点 C CE CD ,垂足为 C AD 相交于点 E ,若 AD = 8 BC = 6 ,则 2 OE + AE BD 的值为 (    )

A. 4 3 B. 3 4 C. 5 3 D. 5 4

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC C = 65 ° ,点 D BC 边上任意一点,过点 D DF / / AB AC 于点 E ,则 FEC 的度数是 (    )

A. 120 ° B. 130 ° C. 145 ° D. 150 °

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,以点 B 为圆心, BC 长为半径画弧,交线段 AB 于点 D ;以点 A 为圆心, AD 长为半径画弧,交线段 AC 于点 E ,连接 CD

(1)若 A = 28 ° ,求 ACD 的度数.

(2)设 BC = a AC = b

①线段 AD 的长是方程 x 2 + 2 ax b 2 = 0 的一个根吗?说明理由.

②若 AD = EC ,求 a b 的值.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以点 C 为圆心, CB 长为半径画弧,交 AB 于点 B 和点 D ,再分别以点 B D 为圆心,大于 1 2 BD 长为半径画弧,两弧相交于点 M ,作射线 CM AB 于点 E .若 AE = 2 BE = 1 ,则 EC 的长度是 (    )

A.2B.3C. 3 D. 5

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的性质试题