如图, 中, , 垂直平分 ,交线段 于点 (点 与点 不重合),点 为 上一点,点 为 上一点(点 与点 不重合),且 .
(1)如图1,当 时,线段 和 的数量关系是 .
(2)如图2,当 时,猜想线段 和 的数量关系,并加以证明.
(3)若 , , ,请直接写出 的长.
如图,在 中, ,点 , 分别在边 , 上, ,连结 , .
(1)若 ,求 , 的度数;
(2)写出 与 之间的关系,并说明理由.
我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在 中, 是 边上的中线, 与 的“极化值”就等于 的值,可记为 △ .
(1)在图1中,若 , , , 是 边上的中线,则 △ , △ ;
(2)如图2,在 中, , ,求 △ 、 △ 的值;
(3)如图3,在 中, , 是 边上的中线,点 在 上,且 .已知 △ , △ ,求 的面积.
如图,等腰 的底边 ,面积为120,点 在边 上,且 , 是腰 的垂直平分线,若点 在 上运动,则 周长的最小值为 .
如图,在 中, ,点 在边 上移动(点 不与点 , 重合),满足 ,且点 、 分别在边 、 上.
(1)求证: ;
(2)当点 移动到 的中点时,求证: 平分 .
已知:如图,在 中, , 与 相切于点 .求证: .小明同学的证明过程如下框:
证明:连结 , , , 又 , , . |
小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.
如图,已知等腰三角形 中, ,点 、 分别在边 、 上,且 ,连接 、 ,交于点 .
(1)判断 与 的数量关系,并说明理由;
(2)求证:过点 、 的直线垂直平分线段 .
如图,已知 是 的直径, 是 延长线上一点, 切 于点 , 是 的弦, ,垂足为 .
(1)求证: .
(2)过点 作 交 于点 ,交 于点 ,连接 ,若 , ,求 的长.
如图,四边形 为平行四边形,连接 ,且 .请用尺规完成基本作图:作出 的角平分线与 交于点 .连接 交 于点 ,交 于点 ,猜想线段 和线段 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)
如图,在 中, , .分别以点 , 为圆心,大于 的长为半径画弧,两弧交于 , 两点,直线 交 于点 ,连接 .以点 为圆心, 为半径画弧,交 延长线于点 ,连接 .若 ,则 的周长为 .
如图,在 中, , 和 关于直线 对称,连接 ,与 相交于点 ,过点 作 ,垂足为 , 相交于点 ,若 , ,则 的值为
A. B. C. D.
如图,在 中, , ,点 是 边上任意一点,过点 作 交 于点 ,则 的度数是
A. B. C. D.
如图,在 中, ,以点 为圆心, 长为半径画弧,交线段 于点 ;以点 为圆心, 长为半径画弧,交线段 于点 ,连接 .
(1)若 ,求 的度数.
(2)设 , .
①线段 的长是方程 的一个根吗?说明理由.
②若 ,求 的值.