如图,已知边长为2的等边三角形 中,分别以点 , 为圆心, 为半径作弧,两弧交于点 ,连结 .若 的长为 ,则 的值为 .
如图,在 中, ,分别以点 , 为圆心,以大于 长为半径画弧,两弧交于点 , .作直线 ,交 于点 .分别以点 , 为圆心,以大于 长为半径画弧,两弧交于点 , .作直线 ,交 于点 .连接 , .若 ,则 .
如图,点 是 的直径 延长线上的一点 ,点 是线段 的中点.
(1)尺规作图:在直径 上方的圆上作一点 ,使得 ,连接 , (保留清晰作图痕迹,不要求写作法);并证明 是 的切线;
(2)在(1)的条件下,若 , ,求 的长.
阅读与思考
如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.
年 月 日星期日 没有直角尺也能作出直角 今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 ,现根据木板的情况,要过 上的一点 ,作出 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢? 办法一:如图①,可利用一把有刻度的直尺在 上量出 ,然后分别以 , 为圆心,以 与 为半径画圆弧,两弧相交于点 ,作直线 ,则 必为 . 办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 , 两点,然后把木棒斜放在木板上,使点 与点 重合,用铅笔在木板上将点 对应的位置标记为点 ,保持点 不动,将木棒绕点 旋转,使点 落在 上,在木板上将点 对应的位置标记为点 .然后将 延长,在延长线上截取线段 ,得到点 ,作直线 ,则 . 我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢? |
任务:
(1)填空:“办法一”依据的一个数学定理是 ;
(2)根据“办法二”的操作过程,证明 ;
(3)①尺规作图:请在图③的木板上,过点 作出 的垂线(在木板上保留作图痕迹,不写作法);
②说明你的作法所依据的数学定理或基本事实(写出一个即可).
如图,在 中, , .分别以点 , 为圆心,大于 的长为半径画弧,两弧交于 , 两点,直线 交 于点 ,连接 .以点 为圆心, 为半径画弧,交 延长线于点 ,连接 .若 ,则 的周长为 .
如图,在 中, ,分别以点 、 为圆心,以大于 的长为半径画弧,两弧分别交于点 、 ,作直线 交 点 ;以点 为圆心,适当长为半径画弧,分别交 、 于点 、 ,再分别以点 、 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 ,此时射线 恰好经过点 ,则 度.
如图, 中, , 平分 交 于点 ,按下列步骤作图:
步骤1:分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于 , 两点;
步骤2:作直线 ,分别交 , 于点 , ;
步骤3:连接 , .
若 , ,则线段 的长为
A. B. C. D.
如图,在 中, , , ,分别以点 、 为圆心,大于 的长为半径画弧,两弧交点分别为点 、 ,过 、 两点作直线交 于点 ,则 的长是 .
(1)如图1,已知 垂直平分 ,垂足为 , 与 相交于点 ,连接 .求证: .
(2)如图2,在 中, , 为 的中点.
①用直尺和圆规在 边上求作点 ,使得 (保留作图痕迹,不要求写作法);
②在①的条件下,如果 ,那么 是 的中点吗?为什么?
如图,在菱形 中, , 是锐角, 于点 , 是 的中点,连接 , .若 ,则 的值为 .
如图,在 中, , , 为 边的中点,线段 的垂直平分线交边 于点 .设 , ,则
A. B. C. D.
如图,在 中, , ,分别以点 , 为圆心,大于 的长为半径作弧,两弧相交于 , 两点,作直线 交 于点 ,连接 ,则
.